Aquatic macroinvertebrate DNA barcoding

Last updated

DNA barcoding is an alternative method to the traditional morphological taxonomic classification, and has frequently been used to identify species of aquatic macroinvertebrates (generally considered those large enough to be seen without magnification). Many are crucial indicator organisms in the bioassessment of freshwater (e.g.: Ephemeroptera, Plecoptera, Trichoptera) and marine (e.g. Annelida, Echinoderms, Molluscs) ecosystems.

Contents

Since its introduction, the field of DNA barcoding has matured to bridge the gap between traditional taxonomy and molecular systematics. This technique has the ability to provide more detailed taxonomic information, particularly for cryptic, small, or rare species. DNA barcoding involves specific targeting of gene regions that are found and conserved in most animal species, but have high variation between members of different species. Accurate diagnosis depends on low intraspecific variation compared with that between species, a short DNA sequence such as Cytochrome Subunit Oxidase I gene (COI), would allow precise allocation of an individual to a taxon.

Methodology

While the concept of using DNA sequence divergence for species discrimination has been reported earlier, Hebert et al. (2003) were pioneers in proposing standardization of DNA barcoding as a method of molecularly distinguishing species. [1]

Specimens collection for DNA barcoding does not differ from the traditional methods, apart from the fact that the samples should be preserved in high concentration (>70%) ethanol. [2] It has been indicated that the typical protocol of storing benthic samples in formalin has an adverse effect on DNA integrity. [3]

The key concept for barcoding macroinvertebrates, is proper selection of DNA markers (DNA barcode region) to amplify appropriate gene regions, using PCR techniques. The DNA barcode region needs to be ideally conserved within a species, but variable among different (even closely related) species and therefore, its sequence should serve as a species-specific genetic tag. Therefore, the selection of the marker plays an important role. [4] Cytochrome Subunit Oxidase I gene (COI) is one of the most widely used markers in barcoding of macroinvertebrates. Other markers that can be used are ribosomal RNA genes 16S and 18S.

Moreover, sorting invertebrates into different size categories is useful, since specimens in a sample can vary widely in biomass, depending on species and life stage. [5]

For further details on methods see DNA barcoding.

DNA metabarcoding

Due to the significant number of taxa that compose aquatic macroinvertebrate communities, DNA metabarcoding method is generally used to assess distinct taxa within bulk or water samples. DNA metabarcoding is a method that consists of the same workflow as DNA barcoding, distinguished by the use of high-throughput sequencing (HTS) technologies. The potential of DNA metabarcoding in the assessment and monitoring of various taxonomic groups, has been successfully demonstrated in several studies. [6] [7] Numerous researchers have used metabarcoding methods to classify benthic macroinvertebrates from tissue samples, [8] indicating its feasibility and higher sensitivity from classical taxonomy methods. Others, validate the use of next-generation sequencing (NGS) technologies in environmental samples to evaluate water quality in marine ecosystems [9] and in freshwater biodiversity studies, [10] including macroinvertebrate species assessment. Applications of these technologies in environmental samples is constantly increasing. [11] Most of the recent studies are based on advancing eDNA approaches' implementation, field validation, platform and barcode choice or database limitations. [12]

Application and challenges

Macroinvertebrates (meta)barcoding methods are often used in:

There are also many challenges when it comes to genetic barcoding of aquatic macroinvertebrates:

See also

References

  1. Hebert, Paul D. N.; Cywinska, Alina; Ball, Shelley L.; deWaard, Jeremy R. (2003-02-07). "Biological identifications through DNA barcodes". Proceedings of the Royal Society of London. Series B: Biological Sciences. 270 (1512): 313–321. doi:10.1098/rspb.2002.2218. ISSN   1471-2954. PMC   1691236 . PMID   12614582.
  2. Stein, Eric D.; White, Bryan P.; Mazor, Raphael D.; Miller, Peter E.; Pilgrim, Erik M. (2013). "Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates". PLOS ONE. 8 (1) e51273. Bibcode:2013PLoSO...851273S. doi: 10.1371/journal.pone.0051273 . PMC   3537618 . PMID   23308097.
  3. Baird, Donald J.; Pascoe, Timothy J.; Zhou, Xin; Hajibabaei, Mehrdad (March 2011). "Building freshwater macroinvertebrate DNA-barcode libraries from reference collection material: formalin preservation vs specimen age". Journal of the North American Benthological Society. 30 (1): 125–130. doi:10.1899/10-013.1. ISSN   0887-3593. S2CID   3940136.
  4. Andújar, Carmelo; Arribas, Paula; Gray, Clare; Bruce, Catherine; Woodward, Guy; Yu, Douglas W.; Vogler, Alfried P. (January 2018). "Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill". Molecular Ecology. 27 (1): 146–166. Bibcode:2018MolEc..27..146A. doi:10.1111/mec.14410. hdl: 10044/1/58144 . PMID   29113023. S2CID   7697860.
  5. Elbrecht, Vasco; Peinert, Bianca; Leese, Florian (September 2017). "Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding". Ecology and Evolution. 7 (17): 6918–6926. Bibcode:2017EcoEv...7.6918E. doi:10.1002/ece3.3192. PMC   5587478 . PMID   28904771.
  6. Lejzerowicz, Franck; Esling, Philippe; Pillet, Loïc; Wilding, Thomas A.; Black, Kenneth D.; Pawlowski, Jan (November 2015). "High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems". Scientific Reports. 5 (1) 13932. Bibcode:2015NatSR...513932L. doi:10.1038/srep13932. ISSN   2045-2322. PMC   4564730 . PMID   26355099.
  7. Elbrecht, Vasco; Vamos, Ecaterina Edith; Meissner, Kristian; Aroviita, Jukka; Leese, Florian (October 2017). Yu, Douglas (ed.). "Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring". Methods in Ecology and Evolution. 8 (10): 1265–1275. Bibcode:2017MEcEv...8.1265E. doi: 10.1111/2041-210X.12789 .
  8. Carew, Melissa E; Pettigrove, Vincent J; Metzeling, Leon; Hoffmann, Ary A (2013). "Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species". Frontiers in Zoology. 10 (1): 45. doi: 10.1186/1742-9994-10-45 . ISSN   1742-9994. PMC   3750358 . PMID   23919569.
  9. Lejzerowicz, Franck; Esling, Philippe; Pillet, Loïc; Wilding, Thomas A.; Black, Kenneth D.; Pawlowski, Jan (November 2015). "High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems". Scientific Reports. 5 (1) 13932. Bibcode:2015NatSR...513932L. doi:10.1038/srep13932. ISSN   2045-2322. PMC   4564730 . PMID   26355099.
  10. Deiner, Kristy; Fronhofer, Emanuel A.; Mächler, Elvira; Walser, Jean-Claude; Altermatt, Florian (December 2016). "Environmental DNA reveals that rivers are conveyer belts of biodiversity information". Nature Communications. 7 (1) 12544. Bibcode:2016NatCo...712544D. doi:10.1038/ncomms12544. ISSN   2041-1723. PMC   5013555 . PMID   27572523.
  11. Zaiko, Anastasija; Martinez, Jose L.; Ardura, Alba; Clusa, Laura; Borrell, Yaisel J.; Samuiloviene, Aurelija; Roca, Agustín; Garcia-Vazquez, Eva (December 2015). "Detecting nuisance species using NGST: Methodology shortcomings and possible application in ballast water monitoring" (PDF). Marine Environmental Research. 112 (Pt B): 64–72. Bibcode:2015MarER.112...64Z. doi:10.1016/j.marenvres.2015.07.002. hdl:10651/36902. PMID   26174116. S2CID   9579967.
  12. Fernández, Sara; Rodríguez, Saúl; Martínez, Jose L.; Borrell, Yaisel J.; Ardura, Alba; García-Vázquez, Eva (2018-08-08). Melcher, Ulrich (ed.). "Evaluating freshwater macroinvertebrates from eDNA metabarcoding: A river Nalón case study". PLOS ONE. 13 (8) e0201741. Bibcode:2018PLoSO..1301741F. doi: 10.1371/journal.pone.0201741 . ISSN   1932-6203. PMC   6082553 . PMID   30089147.
  13. Haase, Peter; Pauls, Steffen U.; Schindehütte, Karin; Sundermann, Andrea (December 2010). "First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results". Journal of the North American Benthological Society. 29 (4): 1279–1291. doi:10.1899/09-183.1. ISSN   0887-3593. S2CID   86777562.
  14. "REABIC - Journals - BioInvasions Records - Issue 1 (2018)". www.reabic.net. doi: 10.3391/bir.2018.7.1.08 . Retrieved 2019-04-19.
  15. Venter, Hermoine J.; Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Bezuidenhout, Cornelius C.; Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa (2016-05-26). "DNA-based identification of aquatic invertebrates useful in the South African context?". South African Journal of Science. 112 (5/6): 4. doi: 10.17159/sajs.2016/20150444 . ISSN   0038-2353.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. DeWalt, R. Edward (2011-03-01). "DNA barcoding: a taxonomic point of view". Journal of the North American Benthological Society. 30 (1): 174–181. doi:10.1899/10-021.1. ISSN   0887-3593. S2CID   84203382.
  17. Carew, Melissa E; Pettigrove, Vincent J; Metzeling, Leon; Hoffmann, Ary A (2013). "Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species". Frontiers in Zoology. 10 (1): 45. doi: 10.1186/1742-9994-10-45 . ISSN   1742-9994. PMC   3750358 . PMID   23919569.
  18. Teletchea, Fabrice (2010-12-01). "After 7 years and 1000 citations: Comparative assessment of the DNA barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists". Mitochondrial DNA. 21 (6): 206–226. doi:10.3109/19401736.2010.532212. ISSN   1940-1736. PMID   21171865. S2CID   10486130.
  19. Rach, Jessica; Bergmann, Tjard; Paknia, Omid; DeSalle, Rob; Schierwater, Bernd; Hadrys, Heike (2017-04-13). Yue, Bi-Song (ed.). "The marker choice: Unexpected resolving power of an unexplored CO1 region for layered DNA barcoding approaches". PLOS ONE. 12 (4) e0174842. Bibcode:2017PLoSO..1274842R. doi: 10.1371/journal.pone.0174842 . ISSN   1932-6203. PMC   5390999 . PMID   28406914.
  20. Macher, Jan N.; Salis, Romana K.; Blakemore, Katie S.; Tollrian, Ralph; Matthaei, Christoph D.; Leese, Florian (February 2016). "Multiple-stressor effects on stream invertebrates: DNA barcoding reveals contrasting responses of cryptic mayfly species". Ecological Indicators. 61: 159–169. Bibcode:2016EcInd..61..159M. doi:10.1016/j.ecolind.2015.08.024.
  21. Stein, Eric D.; White, Bryan P.; Mazor, Raphael D.; Jackson, John K.; Battle, Juliann M.; Miller, Peter E.; Pilgrim, Erik M.; Sweeney, Bernard W. (2014-03-01). "Does DNA barcoding improve performance of traditional stream bioassessment metrics?". Freshwater Science. 33 (1): 302–311. Bibcode:2014FWSci..33..302S. doi: 10.1086/674782 . ISSN   2161-9549. S2CID   67753537.
  22. Webb, Jeffrey M.; Jacobus, Luke M.; Funk, David H.; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J.; DeWalt, R. Edward; Baird, Donald J.; Richard, Barton (2012-05-30). Fenton, Brock (ed.). "A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects". PLOS ONE. 7 (5) e38063. Bibcode:2012PLoSO...738063W. doi: 10.1371/journal.pone.0038063 . ISSN   1932-6203. PMC   3364165 . PMID   22666447.