Aspartylglucosaminuria

Last updated
Aspartylglucosaminuria
Other namesGlycosylasparaginase deficiency [1]
Autosomal recessive - en.svg
Autosomal recessive is the inheritance pattern of this condition
Specialty Medical genetics, endocrinology   OOjs UI icon edit-ltr-progressive.svg

Aspartylglucosaminuria (AGU) is an inherited disease that is characterized by a decline in mental functioning, accompanied by an increase in skin, bone and joint issues.

Contents

The disease is caused by a defect in an enzyme known as aspartylglucosaminidase. This enzyme plays a significant role in our bodies because it aids in breaking down certain sugars (for example, oligosaccharides) that are attached to specific proteins (for example, glycoproteins). Aspartylglucosaminuria itself is characterized as a lysosomal disease because it does deal with inadequate activity in an enzyme's function. [2] Aspartylglucosaminidase functions to break down glycoproteins. These proteins are most abundant in the tissues of the body and in the surfaces of major organs, such as the liver, spleen, thyroid and nerves. When glycoproteins are not broken down, aspartylglucosaminidase backs up in the lysosomes along with other substances. This backup causes progressive damage to the tissues and organs. [3]

Signs and symptoms

At birth, there is no sign that a child will develop symptoms of aspartylglucosaminuria. Typically, signs and symptoms become apparent between two and four years of age and become progressively worse as the individual ages. The following signs and symptoms may appear: [3]  

  1. thickening of the skin
  2. features becoming more prominent
  3. large head
  4. broad lower jaw
  5. short, broad nose
  6. rounded cheeks [3]
  1. progressive loss of speech
  2. decrease in mental functioning
  3. before school age, concentration lowers
  4. development continues, but becomes slower than usual [3]
  1. learned skills become lost which result in severe learning disabilities
  2. motor skills deteriorate
  3. individuals become less mobile and more dependent

(Children are physically uncoordinated, but remain able to play sports and do everyday activities until they reach adulthood.)

  1. enlargement of the spleen and liver
  2. diarrhea

Genetics

Aspartylglucosaminuria is an autosomal recessive genetic condition that is inherited from both parents. The AGU patient is born with two copies of the mutated AGA gene. One copy comes from the mother’s egg and the other copy comes from the father’s sperm. [2] In order to develop aspartylglucosaminuria, the individual must inherit changes in both of his AGU genes (autonomic recessive inheritance). When a person receives one changed form of the gene AGU from one of the parents, the individual is then classified as a carrier. [5] [6]

Diagnosis

In order to be diagnosed with AGU an individual takes a urine test, which will show indication of an increased amount of aspartylglucosamin being secreted. The confirmation of the diagnosis of aspartylglucosaminuria requires a blood test. This helps show if the enzyme aspartylglucosaminidase is present or partially absent. A skin simple will also show the amount of aspartylglucosaminidase present. [4]

Pre-natal diagnosis

When families have a child who has already been diagnosed with AGU, they have the option to observe the enzyme's activity that codes for AGU in future pregnancy, to help determine if the next child will also have a positive diagnosis for aspartylglucosaminuria. [2]

Treatment

No treatment is available to cure or slow down the progression of aspartylglucosaminuria. Bone marrow transplants have been conducted in hope that the bone marrow will produce the missing enzyme. The results of the tests thus far have shown to be inconclusive. [2]

Preventions/interventions to signs and symptoms

Since ear infections and respiratory infections are common for children diagnosed with aspartylglucosaminuria, it is best to have regular checkups for both the ears and the respiratory tract.[ citation needed ]

Extreme sensitivity to the sun’s rays may develop; the best way to protect an individual diagnosed with aspartylglucosaminuria is to have them wear sunglasses, hats or caps to protect their eyes.Epilepsy and insomnia can both be treated with medication.[ citation needed ]

It will be beneficial to children who are diagnosed with AGU to receive an education from a school with special teaching. [4]

Habilitation

The process of habilitation for individuals diagnosed with AGU needs to be established in their early stages of life. The team for habilitation should include professionals who are experienced in disabilities and the effects that having a disability can have on everyday life. Habilitation will include assessments, assistance with the choice of aids, and information concerning disabilities and counseling. [4]

Prognosis

Individuals with AGU typically have normal development in infancy. Around the age of 2–4 years, they begin showing signs of developmental delay, but development is still progressing. Initial symptoms may present as clumsiness and/or speech delay. Individuals with AGU also show increased upper respiratory infections. Development continues until about puberty; however, an individual at 13–16 years of age typically shows mental and motor development similar to a 5-6 year old. Around puberty, a gradual decline in mental abilities and motor skills occurs. This progressive decline continues until about age 25–28, when rapid impairment of abilities occurs, resulting in severe intellectual disability. [4]

Epidemiology

Aspartylglucosaminuria is estimated to affect 1 in 18,500 people in Finland. This condition is less common in other countries, but the incidence is unknown. [5] Even though this disease can occur in various races and ethnicities, another study backed this finding up by stating that 1 in 26,000 people in Finland had the disease and that 1 in 18,000 were carriers. [3]

After trisomy 21 and fragile X syndrome, this is the most frequent multiple congenital anomaly/intellectual disability syndrome in Finland. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Sly syndrome</span> Medical condition

Sly syndrome, also called mucopolysaccharidosis type VII (MPS-VII), is an autosomal recessive lysosomal storage disease caused by a deficiency of the enzyme β-glucuronidase. This enzyme is responsible for breaking down large sugar molecules called glycosaminoglycans. The inability to break down GAGs leads to a buildup in many tissues and organs of the body. The severity of the disease can vary widely.

<span class="mw-page-title-main">Mucopolysaccharidosis</span> Medical condition

Mucopolysaccharidoses are a group of metabolic disorders caused by the absence or malfunctioning of lysosomal enzymes needed to break down molecules called glycosaminoglycans (GAGs). These long chains of sugar carbohydrates occur within the cells that help build bone, cartilage, tendons, corneas, skin and connective tissue. GAGs are also found in the fluids that lubricate joints.

<span class="mw-page-title-main">Alpha-mannosidosis</span> Medical condition

Alpha-mannosidosis is a lysosomal storage disorder, first described by Swedish physician Okerman in 1967. In humans it is known to be caused by an autosomal recessive genetic mutation in the gene MAN2B1, located on chromosome 19, affecting the production of the enzyme alpha-D-mannosidase, resulting in its deficiency. Consequently, if both parents are carriers, there will be a 25% chance with each pregnancy that the defective gene from both parents will be inherited, and the child will develop the disease. There is a two in three chance that unaffected siblings will be carriers. In livestock alpha-mannosidosis is caused by chronic poisoning with swainsonine from locoweed.

<span class="mw-page-title-main">Hurler syndrome</span> Genetic disorder

Hurler syndrome, also known as mucopolysaccharidosis Type IH (MPS-IH), Hurler's disease, and formerly gargoylism, is a genetic disorder that results in the buildup of large sugar molecules called glycosaminoglycans (GAGs) in lysosomes. The inability to break down these molecules results in a wide variety of symptoms caused by damage to several different organ systems, including but not limited to the nervous system, skeletal system, eyes, and heart.

Familial dysautonomia (FD), also known as Riley-Day Syndrome, is a rare, progressive, recessive genetic disorder of the autonomic nervous system that affects the development and survival of sensory, sympathetic and some parasympathetic neurons in the autonomic and sensory nervous system.

<span class="mw-page-title-main">X-linked recessive inheritance</span> Mode of inheritance

X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be always expressed in males and in females who are homozygous for the gene mutation, see zygosity. Females with one copy of the mutated gene are carriers.

<span class="mw-page-title-main">Maple syrup urine disease</span> Autosomal recessive metabolic disorder

Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder affecting branched-chain amino acids. It is one type of organic acidemia. The condition gets its name from the distinctive sweet odor of affected infants' urine and earwax, particularly prior to diagnosis and during times of acute illness.

<span class="mw-page-title-main">Sandhoff disease</span> Medical condition

Sandhoff disease is a lysosomal genetic, lipid storage disorder caused by the inherited deficiency to create functional beta-hexosaminidases A and B. These catabolic enzymes are needed to degrade the neuronal membrane components, ganglioside GM2, its derivative GA2, the glycolipid globoside in visceral tissues, and some oligosaccharides. Accumulation of these metabolites leads to a progressive destruction of the central nervous system and eventually to death. The rare autosomal recessive neurodegenerative disorder is clinically almost indistinguishable from Tay–Sachs disease, another genetic disorder that disrupts beta-hexosaminidases A and S. There are three subsets of Sandhoff disease based on when first symptoms appear: classic infantile, juvenile and adult late onset.

<span class="mw-page-title-main">Sialidosis</span> Medical condition

Mucolipidosis type I is an inherited lysosomal storage disease that results from a deficiency of the enzyme alpha-N -acetyl neuraminidase (sialidase). The lack of this enzyme results in an abnormal accumulation of complex carbohydrates known as mucopolysaccharides, and of fatty substances known as mucolipids. Both of these substances accumulate in bodily tissues.

<span class="mw-page-title-main">Farber disease</span> Medical condition

Farber disease is an extremely rare, progressive, autosomal recessive lysosomal storage disease caused by a deficiency of the acid ceramidase enzyme. Acid ceramidase is responsible for breaking down ceramide into sphingosine and fatty acid. When the enzyme is deficient, this leads to an accumulation of fatty material in the lysosomes of the cells, leading to the signs and symptoms of this disorder.

Myoclonic epilepsy refers to a family of epilepsies that present with myoclonus. It starts in both sides of the body at once, and last for more than a second or two. When myoclonic jerks are occasionally associated with abnormal brain wave activity, it can be categorized as myoclonic seizure. If the abnormal brain wave activity is persistent and results from ongoing seizures, then a diagnosis of myoclonic epilepsy may be considered. Myoclonic seizures frequently occur in day-to-day life. During sleep, abrupt jerks and hiccups occurred.

<span class="mw-page-title-main">Hunter syndrome</span> Medical condition

Hunter syndrome, or mucopolysaccharidosis type II, is a rare genetic disorder in which large sugar molecules called glycosaminoglycans build up in body tissues. It is a form of lysosomal storage disease. Hunter syndrome is caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (I2S). The lack of this enzyme causes heparan sulfate and dermatan sulfate to accumulate in all body tissues. Hunter syndrome is the only MPS syndrome to exhibit X-linked recessive inheritance.

<span class="mw-page-title-main">Fucosidosis</span> Medical condition

Fucosidosis is a rare lysosomal storage disorder in which the FUCA1 gene experiences mutations that severely reduce or stop the activity of the alpha-L-fucosidase enzyme. The result is a buildup of complex sugars in parts of the body, which leads to death. Fucosidosis is one of nine identified glycoprotein storage diseases. The gene encoding the alpha-fucosidase, FUCA 1, was found to be located to the short arm of chromosome 1p36 - p34, by Carrit and co-workers, in 1982.

Inclusion-cell (I-cell) disease, also referred to as mucolipidosis II, is part of the lysosomal storage disease family and results from a defective phosphotransferase. This enzyme transfers phosphate to mannose residues on specific proteins. Mannose-6-phosphate serves as a marker for proteins to be targeted to lysosomes within the cell. Without this marker, proteins are instead secreted outside the cell, which is the default pathway for proteins moving through the Golgi apparatus. Lysosomes cannot function without these proteins, which function as catabolic enzymes for the normal breakdown of substances in various tissues throughout the body. As a result, a buildup of these substances occurs within lysosomes because they cannot be degraded, resulting in the characteristic I-cells, or "inclusion cells" seen microscopically. In addition, the defective lysosomal enzymes normally found only within lysosomes are instead found in high concentrations in the blood, but they remain inactive at blood pH because they require the low lysosomal pH 5 to function.

<span class="mw-page-title-main">Aspartylglucosaminidase</span> Protein-coding gene in the species Homo sapiens

N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase is an enzyme that in humans is encoded by the AGA gene.

<span class="mw-page-title-main">Prolidase deficiency</span> Medical condition

Prolidase deficiency (PD) is an extremely uncommon autosomal recessive disorder associated with collagen metabolism that affects connective tissues and thus a diverse array of organ systems more broadly, though it is extremely inconsistent in its expression.

Progressive Myoclonic Epilepsies (PME) are a rare group of inherited neurodegenerative diseases characterized by myoclonus, resistance to treatment, and neurological deterioration. The cause of PME depends largely on the type of PME. Most PMEs are caused by autosomal dominant or recessive and mitochondrial mutations. The location of the mutation also affects the inheritance and treatment of PME. Diagnosing PME is difficult due to their genetic heterogeneity and the lack of a genetic mutation identified in some patients. The prognosis depends largely on the worsening symptoms and failure to respond to treatment. There is no current cure for PME and treatment focuses on managing myoclonus and seizures through antiepileptic medication (AED).

<span class="mw-page-title-main">Beta-mannosidosis</span> Medical condition

Beta-mannosidosis, also called lysosomal beta-mannosidase deficiency, is a disorder of oligosaccharide metabolism caused by decreased activity of the enzyme beta-mannosidase. This enzyme is coded for by the gene MANBA, located at 4q22-25. Beta-mannosidosis is inherited in an autosomal recessive manner. Affected individuals appear normal at birth, and can have a variable clinical presentation. Infantile onset forms show severe neurodegeneration, while some children have intellectual disability. Hearing loss and angiokeratomas are common features of the disease.

<span class="mw-page-title-main">Galactosialidosis</span> Rare disease

Galactosialidosis, also known as neuraminidase deficiency with beta-galactosidase deficiency, is a genetic lysosomal storage disease. It is caused by a mutation in the CTSA gene which leads to a deficiency of enzymes β-galactosidase and neuraminidase. This deficiency inhibits the lysosomes of cells from functioning properly, resulting in the accumulation of toxic matter within the cell. Hallmark symptoms include abnormal spinal structure, vision problems, coarse facial features, hearing impairment, and intellectual disability. Because galactosialidosis involves the lysosomes of all cells, it can affect various areas of the body, including the brain, eyes, bones, and muscles. Depending on the patient's age at the onset of symptoms, the disease consists of three subtypes: early infantile, late infantile, and juvenile/adult. This condition is considered rare, with most cases having been in the juvenile/adult group of patients.

<span class="mw-page-title-main">Schindler disease</span> Medical condition

Schindler disease, also known as Kanzaki disease and alpha-N-acetylgalactosaminidase deficiency is a rare disease found in humans. This lysosomal storage disorder is caused by a deficiency in the enzyme alpha-NAGA (alpha-N-acetylgalactosaminidase), attributable to mutations in the NAGA gene on chromosome 22, which leads to excessive lysosomal accumulation of glycoproteins. A deficiency of the alpha-NAGA enzyme leads to an accumulation of glycosphingolipids throughout the body. This accumulation of sugars gives rise to the clinical features associated with this disorder. Schindler disease is an autosomal recessive disorder, meaning that one must inherit an abnormal allele from both parents in order to have the disease.

References

  1. Aspartylglycosaminuria at NIH's Office of Rare Diseases
  2. 1 2 3 4 "Aspartylglucosaminuria i". ISMRD — The International Advocate for Glycoprotein Storage Diseases.
  3. 1 2 3 4 5 "LabCorp". Integrated Genetics, LabCorp Specialty Testing Group. Archived from the original on 2015-01-28. Retrieved 2013-04-02.
  4. 1 2 3 4 5 "Aspartylglucosaminuria". Swedish Information Centre for Rare Diseases. 2011-03-16. v1.3. Archived from the original on 8 April 2019.
  5. 1 2 "Aspartylglucosaminuria". Genetics Home Reference. US National Library of Medicine.
  6. "Autosomal recessive". Genetics Home Reference. US National Library of Medicine. Archived from the original on 2013-04-28. Retrieved 2013-04-05.
  7. Viitapohja, Kari. "Mental Retardation in Finland". Finnish Information Center on Mental Retardation. Retrieved 2005-01-30.