Azadinium spinosum

Last updated

Contents

Azadinium spinosum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Myzozoa
Superclass: Dinoflagellata
Class: Dinophyceae
Family: Amphidomataceae
Genus: Azadinium
Species:
A. spinosum
Binomial name
Azadinium spinosum
Elbrächter et Tillmann

Azadinium spinosum is a species of dinoflagellates that produces azaspiracid toxins (toxins associated with shellfish poisoning), [1] particularly AZA 1, AZA 2 and an isomer of AZA 2. [2]

Description

It measures 12–16 μm in length and 7–11 μm wide, is a peridinin-containing photosynthetic dinoflagellate with a thin theca. Its large nucleus is spherical and present posteriorly, whereas its single chloroplast is parietal, lobed, and extends into the epi- and hyposome. [2]

Related Research Articles

<span class="mw-page-title-main">Paralytic shellfish poisoning</span> Syndrome of shellfish poisoning

Paralytic shellfish poisoning (PSP) is one of the four recognized syndromes of shellfish poisoning, which share some common features and are primarily associated with bivalve mollusks. These shellfish are filter feeders and accumulate neurotoxins, chiefly saxitoxin, produced by microscopic algae, such as dinoflagellates, diatoms, and cyanobacteria. Dinoflagellates of the genus Alexandrium are the most numerous and widespread saxitoxin producers and are responsible for PSP blooms in subarctic, temperate, and tropical locations. The majority of toxic blooms have been caused by the morphospecies Alexandrium catenella, Alexandrium tamarense, Gonyaulax catenella and Alexandrium fundyense, which together comprise the A. tamarense species complex. In Asia, PSP is mostly associated with the occurrence of the species Pyrodinium bahamense.

<span class="mw-page-title-main">Neurotoxic shellfish poisoning</span> Syndrome of shellfish poisoning

Neurotoxic shellfish poisoning (NSP) is caused by the consumption of brevetoxins, which are marine toxins produced by the dinoflagellate Karenia brevis. These toxins can produce a series of gastrointestinal and neurological effects. Outbreaks of NSP commonly take place following harmful algal bloom (HAB) events, commonly referred to as "Florida red tide". Algal blooms are a naturally-occurring phenomenon, however their frequency has been increasing in recent decades at least in-part due to human activities, climate changes, and the eutrophication of marine waters. HABs have been occurring for all of documented history, evidenced by the Native Americans' understanding of the dangers of shellfish consumption during periods of marine bioluminescence. Blooms have been noted to occur as far north as North Carolina and are commonly seen alongside the widespread death of fish and sea birds. In addition to the effects on human health, the economic impact of HAB-associated shellfish toxin outbreaks can have significant economic implications as well due to not only the associated healthcare costs, but the adverse impact on the commercial shellfish industry.

Alexandrium fundyense is a species of dinoflagellates. It produces toxins that induce paralytic shellfish poisoning (PSP), and is a common cause of red tide. A. fundyense regularly forms massive blooms along the northeastern coasts of the United States and Canada, resulting in enormous economic losses and public health concerns.

Alexandrium tamarense is a species of dinoflagellates known to produce saxitoxin, a neurotoxin which causes the human illness clinically known as paralytic shellfish poisoning (PSP). Multiple species of phytoplankton are known to produce saxitoxin, including at least 10 other species from the genus Alexandrium.

<i>Karlodinium</i> Genus of single-celled organisms

Karlodinium is a genus of athecate dinoflagellates that lives worldwide. They are often toxin producing, and compared to the other members of the Kareniaceae, are fairly small at <8-15 µm diameter. They are also able to form intense algal blooms. This species relies of photosynthesis and phagotrphy to grow.

<i>Dinophysis</i> Genus of single-celled organisms

Dinophysis is a genus of dinoflagellates common in tropical, temperate, coastal and oceanic waters. It was first described in 1839 by Christian Gottfried Ehrenberg.

Gonyaulax is a genus of dinoflagellates with the type species Gonyaulax spinifera Diesing. Gonyaulax belongs to red dinoflagellates and commonly causes red tides. It can produce yesotoxins: for example, strains of Gonyaulax spinifera from New Zealand are yessotoxin producers.

<i>Dinophysis norvegica</i> Species of single-celled organism

Dinophysis norvegica is a species of dinoflagellate most commonly associated with diarrheal shellfish poisoning.

<i>Alexandrium</i> (dinoflagellate) Genus of single-celled organisms

Alexandrium is a genus of dinoflagellates. It contains some of the dinoflagellate species most harmful to humans, because it produces toxic harmful algal blooms (HAB) that cause paralytic shellfish poisoning (PSP) in humans. There are about 30 species of Alexandrium that form a clade, defined primarily on morphological characters in their thecal plates.

<span class="mw-page-title-main">Azaspiracid</span> Chemical compound

Azaspiracids (AZA) are a group of polycyclic ether marine algal toxins produced by the small dinoflagellate Azadinium spinosum that can accumulate in shellfish and thereby cause illness in humans.

Alexandrium catenella is a species of dinoflagellates. It is among the group of Alexandrium species that produce toxins that cause paralytic shellfish poisoning, and is a cause of red tide. Alexandrium catenella is observed in cold, coastal waters, generally at temperate latitudes. These organisms have been found in the west coast of North America, Japan, Australia, and parts of South Africa.

Coolia tropicalis is a species of dinoflagellates, first found in Belize.

Heterocapsa circularisquama is a species of dinoflagellate notable for the production of a biotoxin affecting marine fauna. It is known to produce large red tides off western Japan, causing high bivalve mortality, particularly pearl oysters. It is very similar to Heterocapsa illdefina, however H. circularisquama carries six radiating ridges on its circular basal plate, and its scales have longer spines, among other subtle differences in morphology.

<i>Dinophysis acuminata</i> Species of dinoflagellate

Dinophysis acuminata is a marine plankton species of dinoflagellates that is found in coastal waters of the north Atlantic and Pacific oceans. The genus Dinophysis includes both phototrophic and heterotrophic species. D. acuminata is one of several phototrophic species of Dinophysis classed as toxic, as they produce okadaic acid which can cause diarrhetic shellfish poisoning (DSP). Okadiac acid is taken up by shellfish and has been found in the soft tissue of mussels and the liver of flounder species. When contaminated animals are consumed, they cause severe diarrhoea. D. acuminata blooms are constant threat to and indication of diarrhoeatic shellfish poisoning outbreaks.

Gambierdiscus polynesiensis is a species of toxic dinoflagellate. It is 68–85 μm long and 64–75 μm wide dorsoventrally and its surface is smooth. It is identified by a large triangular apical pore plate, a narrow fish-hook opening surrounded by 38 round pores, and a large, broad posterior intercalary plate. Its first plate occupies 60% of the width of the hypotheca.

Karenia selliformis is a species from the genus Karenia, which are dinoflagellates. It was first discovered in New Zealand. Karenia selliformis produces the highly toxic gymnodimine, and as such is a potentially harmful ocean dweller. Gymnodimine is a nicotinic acetylcholine receptor-blocking phycotoxin, a source of shellfish poisoning.

<i>Gambierdiscus</i> Genus of protists

Gambierdiscus is a genus of marine dinoflagellates that produce ciguatoxins, a type of toxin that causes the foodborne illness known as ciguatera. They are usually epiphytic on macroalgae growing on coral reefs.

Vulcanodinium rugosum is a species of dinoflagellate first described in 2011 based on samples collected from the French coast of the Mediterranean Sea. It is thecate and its specific epithet is a reference to the striated appearance of its surface. It is the type species of the genus Vulcanodinium. Molecular phylogenetics suggests that it belongs in the order Peridiniales. Studies of the species in culture suggest it has at least two stages in its life cycle, one motile, thecate, and likely planktonic, and one nonmotile, athecate, and likely epibenthic. The species is photosynthetic and seems to prefer warm saline environments. It is found at least in warm Pacific and Mediterranean waters, and is likely globally distributed.

Coolia is a marine dinoflagellate genus in the family Ostreopsidaceae. It was first described by Meunier in 1919. There are currently seven identified species distributed globally in tropical and temperate coastal waters. Coolia is a benthic or epiphytic type dinoflagellate: it can be found adhered to sediment or other organisms but it is not limited to these substrates. It can also be found in a freely motile form in the water column. The life cycle of Coolia involves an asexual stage where the cell divides by binary fission and a sexual stage where cysts are produced. Some of the species, for example, Coolia tropicalis and Coolia malayensis, produce toxins that can potentially cause shellfish poisoning in humans.

Karlodinium armiger is a species of dinoflagellates belonging to the family Kareniaceae. It was first isolated from the Mediterranean sea & described in 2006.

References

  1. Salas, Rafael; Tillmann, Urban; John, Uwe; Kilcoyne, Jane; Burson, Amanda; Cantwell, Caoimhe; Hess, Philipp; Jauffrais, Thierry; Silke, Joe (2011). "The role of Azadinium spinosum (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels" (PDF). Harmful Algae. 10 (6): 774–783. doi:10.1016/j.hal.2011.06.010. ISSN   1568-9883.
  2. 1 2 Tillmann, Urban; Elbrächter, Malte; Krock, Bernd; John, Uwe; Cembella, Allan (2009). "Azadinium spinosumgen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins". European Journal of Phycology. 44 (1): 63–79. Bibcode:2009EJPhy..44...63T. doi: 10.1080/09670260802578534 . ISSN   0967-0262.

Further reading