Observation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Triangulum |
Right ascension | 01h 33m 55.93272s |
Declination | 30° 45′ 30.4452″ |
Apparent magnitude (V) | 14.683 |
Characteristics | |
Evolutionary stage | Yellow hypergiant |
Spectral type | A8–F0Ia |
B−V color index | 0.428 |
Astrometry | |
Proper motion (μ) | RA: 0.066±0.029 mas/yr Dec.: 0.007±0.020 mas/yr |
Parallax (π) | -0.1049 ± 0.0259 mas |
Distance | 2,700,000 ly |
Absolute magnitude (MV) | –10.2 |
Absolute bolometric magnitude (Mbol) | –10.1 |
Details | |
Radius | 484 - 642 R☉ |
Luminosity | 863,000 - 875,000 L☉ |
Temperature | 6,970 - 8,000 K |
Other designations | |
LGGS J013355.96+304530.6 | |
Database references | |
SIMBAD | data |
B324 is a yellow hypergiant in the Triangulum Galaxy, located near the giant H II region IC 142 around 2.7 million light years away. It is the brightest star in the Triangulum Galaxy in terms of apparent magnitude.
The star has been first catalogued in 1980 by Humphreys and Sandage. The star was found to be the brightest star in the galaxy. It was given the spectral type A5eIa and it was considered a blue supergiant with emission lines. [1]
In 1980 the star was already known as a very luminous star. The absolute visual magnitude was estimated to be -9.4, making it brighter than any other blue supergiant. [1] Later in 1990 and 1996 two papers obtained an even higher absolute magnitude of -10 and a luminosity of 787,000 L☉. [2] [3]
The star has a P Cygni profile. This is commonly thought to be a characteristic of luminous blue variables. However, it is present in some other stars with high mass-loss rates, such as IRC +10420. Notably its luminosity is similar to that of LBVs like S Doradus during an outburst. It also shares some characteristics with the A-type hypergiant HD 33579. [4]
The star was first suggested to be a star similar to S Doradus in 1995 based on the spectral similarities to Var B. Independently a year later a different study came to the same conclusion based on the spectral variation and the profile. It was given the spectral type F0-F5Ia+. [5]
A 2004 study has rejected this classification based on the lack of variability in this star. [6]
In 2012 a study found that the star is more similar to cool LBVs than to yellow hypergiants based on spectral variation, recent circumstellar ejecta and the very high luminosity (which the paper estimated to be 2 million L☉, significantly above the Humphreys-Davidson limit for stars with temperatures comparable to those of the star. While this would imply that the star has stayed in an outburst state for around 20 years, some stars have stayed in this state for even longer. [7]
However, a 2013 paper casts doubt on this classification. The Ca II and [Ca II] emission is strong and the star shows little variability, making it similar to the post-RSG IRC +10420. B324 also has small near-infrared excess. The high derived luminosity was based on a large distance to M33 and the luminosity was revised to 863,000 L☉. Other similarities to the yellow hypergiant mentioned above include the similar absorption line spectra. The star's temperature was estimaged to be 8,000 K and the spectral type A8-F0Ia was assigned to this star. [8]
A 2016 paper got a similar luminosity for the star (873,000 L☉) and a slightly lower temperature of 6,970 K. [9]
In 2017 it has been suggested that the star might be evolving to cooler temperatures instead, suggesting that the star has never been a red supergiant yet. [10]
The same year a paper supporting the post-RSG classification has been published, such as the small 12C/13C ratio and the Na I emission, present in Rho Cassiopeiae, HR 8752 and other yellow hypergiants. [11]
Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
Red supergiants (RSGs) are stars with a supergiant luminosity class and a stellar classification K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.
The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington luminosity, it will initiate a very intense radiation-driven stellar wind from its outer layers. Since most massive stars have luminosities far below the Eddington luminosity, their winds are driven mostly by the less intense line absorption. The Eddington limit is invoked to explain the observed luminosities of accreting black holes such as quasars.
A blue supergiant (BSG) is a hot, luminous star, often referred to as an OB supergiant. They are usually considered to be those with luminosity class I and spectral class B9 or earlier, although sometimes A-class supergiants are also deemed blue supergiants.
Luminous blue variables (LBVs) are rare, massive and evolved stars that show unpredictable and sometimes dramatic variations in their spectra and brightness. They are also known as S Doradus variables after S Doradus, one of the brightest stars of the Large Magellanic Cloud.
KY Cygni is a red supergiant of spectral class M3.5Ia located in the constellation Cygnus. It is approximately 4,700 light-years away.
A yellow hypergiant (YHG) is a massive star with an extended atmosphere, a spectral class from A to K, and, starting with an initial mass of about 20–60 solar masses, has lost as much as half that mass. They are amongst the most visually luminous stars, with absolute magnitude (MV) around −9, but also one of the rarest, with just 20 known in the Milky Way and six of those in just a single cluster. They are sometimes referred to as cool hypergiants in comparison with O- and B-type stars, and sometimes as warm hypergiants in comparison with red supergiants.
MY Cephei is a red supergiant located in open cluster NGC 7419 in the constellation of Cepheus. It is a semiregular variable star with a maximum brightness of magnitude 14.4 and a minimum of magnitude 15.5.
A yellow supergiant (YSG) is a star, generally of spectral type F or G, having a supergiant luminosity class. They are stars that have evolved away from the main sequence, expanding and becoming more luminous.
RW Cephei is a K-type hypergiant and a semirregular variable star in the constellation Cepheus, at the edge of the Sharpless 132 H II region and close to the small open cluster Berkeley 94. It is among the largest stars known with a radius of 1,100 times that of the Sun (R☉), nearly as large as the orbit of Jupiter.
VY Canis Majoris is an extreme oxygen-rich red hypergiant or red supergiant and pulsating variable star 1.2 kiloparsecs from the Solar System in the slightly southern constellation of Canis Major. It is one of the largest known stars, one of the most luminous and massive red supergiants, and one of the most luminous stars in the Milky Way.
A hypergiant (luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term hypergiant is defined as luminosity class 0 (zero) in the MKK system. However, this is rarely seen in literature or in published spectral classifications, except for specific well-defined groups such as the yellow hypergiants, RSG (red supergiants), or blue B(e) supergiants with emission spectra. More commonly, hypergiants are classed as Ia-0 or Ia+, but red supergiants are rarely assigned these spectral classifications. Astronomers are interested in these stars because they relate to understanding stellar evolution, especially star formation, stability, and their expected demise as supernovae. Notable examples of hypergiants include the Pistol Star, a blue hypergiant located close to the Galactic Center and one of the most luminous stars known; Rho Cassiopeiae, a yellow hypergiant that is one of the brightest to the naked eye; and Mu Cephei (Herschel's "Garnet Star"), one of the largest and brightest stars known.
IRC +10420, also known as V1302 Aquilae, is a yellow hypergiant star located in the constellation of Aquila at a distance of 4-6 kiloparsecs of the Sun.
NML Cygni or V1489 Cygni is a red hypergiant or red supergiant (RSG) in the constellation Cygnus. It is possibly one of the largest known stars currently known, and is also possibly one of the most luminous and massive cool hypergiants, as well as one of the most luminous stars in the Milky Way.
AE Andromedae is a luminous blue variable (LBV), a type of variable star. The star is one of the most luminous variables in M31, the Andromeda Galaxy.
HR 5171, also known as V766 Centauri, is a yellow hypergiant in the constellation Centaurus. It is said to be either an extreme red supergiant (RSG) or recent post-red supergiant (Post-RSG) yellow hypergiant (YHG), both of which suggest it is one of the largest known stars. The star's diameter is uncertain but likely to be between 1,100 and 1,600 times that of the Sun, while its distance is 3.6 kpc from Earth.
M33-013406.63, also known as B416 or UIT301, is a O-type blue evolved supergiant star in the constellation of Triangulum. It is located within the Triangulum Galaxy, which is approximately 2,380,000–3,070,000 light years away from Earth.
Stephenson 2 DFK 49 or St2-11 is a putative post red supergiant star in the constellation Scutum, in the massive open cluster Stephenson 2. It is possibly one of the largest known stars with a radius estimated to be between 1,074 solar radii to 1,300 solar radii, corresponding to volumes of 1.2 and 2.2 times that of the Sun respectively. If it was placed at the center of the Solar System, its photosphere would potentially approach or engulf Jupiter's orbit. It loses mass at a very high rate, resulting in large amounts of infrared excess.
AF Andromedae is a luminous blue variable (LBV), a type of variable star. The star is one of the most luminous variables in M31, the Andromeda Galaxy.