Bangiomorpha

Last updated

Bangiomorpha
Temporal range: 1047 Ma+13/–17 Ma
Bangiomorpha pubescens ; clustered uniseriate filaments with basal holdfasts (Lower Hunting Formation, Stenium Period, Somerset Island, Canadian Arctic Islands).png
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Archaeplastida
Division: Rhodophyta
Class: Bangiophyceae
Order: Bangiales
Family: Bangiaceae
Genus: Bangiomorpha
Butterfield
Species:
B. pubescens
Binomial name
Bangiomorpha pubescens
Butterfield

Bangiomorpha pubescens is a species of red algae in the order Bangiales. [1] It is the first known sexually reproducing organism. A multicellular fossil of Bangiomorpha pubescens was recovered from the Hunting Formation in Somerset Island, Canada that strongly resembles the modern red alga Bangia despite occurring in rocks dating to 1,047  million years ago, during the Stenian period. [2] This species is the oldest example of an organism belonging to an extant phylum. The fossil includes differentiated reproductive cells that are the oldest evidence of sexual reproduction. Sexual reproduction increased genetic variation, which led to an increased rate of evolution and the diversification of eukaryotes.[ citation needed ]

Related Research Articles

The Precambrian is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinized name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.

<span class="mw-page-title-main">Sex</span> Trait that determines an organisms sexually reproductive function

Sex is the biological trait that determines whether a sexually reproducing organism produces male or female gametes. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent. By convention, organisms that produce smaller, more mobile gametes are called male, while organisms that produce larger, non-mobile gametes are called female. An organism that produces both types of gamete is hermaphrodite.

<span class="mw-page-title-main">Mesoproterozoic</span> Second era of the Proterozoic Eon

The Mesoproterozoic Era is a geologic era that occurred from 1,600 to 1,000 million years ago. The Mesoproterozoic was the first era of Earth's history for which a fairly definitive geological record survives. Continents existed during the preceding era, but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today, although their arrangement on the Earth's surface was different.

<span class="mw-page-title-main">Unicellular organism</span> Organism that consists of only one cell

A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. Most prokaryotes are unicellular and are classified into bacteria and archaea. Many eukaryotes are multicellular, but some are unicellular such as protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early protocells possibly emerging 3.5–4.1 billion years ago.

<span class="mw-page-title-main">Multicellular organism</span> Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, unlike unicellular organisms. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.

<span class="mw-page-title-main">Biological life cycle</span> Series of stages of an organism

In biology, a biological life cycle is a series of stages of the life of an organism, that begins as a zygote, often in an egg, and concludes as an adult that reproduces, producing an offspring in the form of a new zygote which then itself goes through the same series of stages, the process repeating in a cyclic fashion.

<span class="mw-page-title-main">Evolution of sexual reproduction</span>

Evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists could have evolved from a common ancestor that was a single-celled eukaryotic species. Sexual reproduction is widespread in eukaryotes, though a few eukaryotic species have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals routinely reproduce asexually without entirely having lost sex. The evolution of sexual reproduction contains two related yet distinct themes: its origin and its maintenance. Bacteria and Archaea (prokaryotes) have processes that can transfer DNA from one cell to another, but it is unclear if these processes are evolutionarily related to sexual reproduction in Eukaryotes. In eukaryotes, true sexual reproduction by meiosis and cell fusion is thought to have arisen in the last eukaryotic common ancestor, possibly via several processes of varying success, and then to have persisted.

<span class="mw-page-title-main">Isogamy</span> Sexual reproduction form involving gametes of the same size

Isogamy is a form of sexual reproduction that involves gametes of the same morphology, and is found in most unicellular eukaryotes. Because both gametes look alike, they generally cannot be classified as male or female. Instead, organisms undergoing isogamy are said to have different mating types, most commonly noted as "+" and "−" strains.

<span class="mw-page-title-main">Male</span> Sex of an organism which produces sperm

Male is the sex of an organism that produces the gamete known as sperm, which fuses with the larger female gamete, or ovum, in the process of fertilisation. A male organism cannot reproduce sexually without access to at least one ovum from a female, but some organisms can reproduce both sexually and asexually. Most male mammals, including male humans, have a Y chromosome, which codes for the production of larger amounts of testosterone to develop male reproductive organs.

<span class="mw-page-title-main">Ectasian</span> Second period of the Mesoproterozoic Era

The Ectasian Period is the second geologic period in the Mesoproterozoic Era and lasted from 1400 Mya to 1200 Mya. Instead of being based on stratigraphy, these dates are defined chronometrically.

<span class="mw-page-title-main">Stenian</span> Third and last period of the Mesoproterozoic Era

The Stenian Period is the final geologic period in the Mesoproterozoic Era and lasted from 1200 Mya to 1000 Mya. Instead of being based on stratigraphy, these dates are defined chronometrically. The name derives from narrow polymetamorphic belts formed over this period. It is preceded by the Ectasian Period and followed by the Neoproterozoic era and the Tonian period.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

The history of life on Earth traces the processes by which living and extinct organisms evolved, from the earliest emergence of life to the present day. Earth formed about 4.5 billion years ago and evidence suggests that life emerged prior to 3.7 Ga. The similarities among all known present-day species indicate that they have diverged through the process of evolution from a common ancestor.

<i>Funisia</i> Genus of animal discovered as an Australian fossil

Funisia is a genus of animal containing the single species F. dorothea. It is an extinct animal from the Ediacaran biota, discovered in South Australia in 2008 by Mary L. Droser and James G. Gehling.

<span class="mw-page-title-main">Protist</span> Eukaryotes other than animals, plants or fungi

A protist or protoctist is any eukaryotic organism that is not an animal, land plant, or fungus. Protists do not form a natural group, or clade, but are a polyphyletic grouping of several independent clades that evolved from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Female</span> Sex of an organism that produces ova

An organism's sex is female if it produces the ovum, the type of gamete that fuses with the male gamete during sexual reproduction.

<span class="mw-page-title-main">Sexual reproduction</span> Biological process

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

<span class="mw-page-title-main">Red algae</span> Division of plant life

Red algae, or Rhodophyta, make up one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest phyla of algae, containing over 7,000 recognized species within over 900 genera amidst ongoing taxonomic revisions. The majority of species (6,793) are Florideophyceae, and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats. Approximately 5% of red algae species occur in freshwater environments, with greater concentrations in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, no terrestrial species exist, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.

<span class="mw-page-title-main">Eukaryote</span> Domain of life whose cells have nuclei

The eukaryotes constitute the domain of Eukarya or Eukaryota, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, and many unicellular organisms are eukaryotes. They constitute a major group of life forms alongside the two groups of prokaryotes: the Bacteria and the Archaea. Eukaryotes represent a small minority of the number of organisms, but given their generally much larger size, their collective global biomass is much larger than that of prokaryotes.

<span class="mw-page-title-main">Bangiales</span> Order of red algae

Bangiales is an order of multicellular red algae of the class Bangiophyceae containing the families Bangiaceae, Granufilaceae, and possibly the extinct genus Rafatazmia with one species, Rafatazmia chitrakootensis. They are one of the oldest eukaryotic organisms, possibly dating back to 1.6 billion years old. Many species are used today as food in different cultures worldwide. Their sizes range from microscopic (Bangiomorpha) to up to two meters long. Many of its species are affected by Pythium porphyrae, a parasitic oomycete. Similar to many other species of red algae, they reproduce both asexually and sexually. They can be both filamentous or foliose, and are found worldwide.

References

  1. Butterfield, Nicholas J. (2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes". Paleobiology . 26 (3): 386–404. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2.
  2. Gibson, Timothy M; Shih, Patrick M; Cumming, Vivien M; Fischer, Woodward W; Crockford, Peter W; Hodgskiss, Malcolm S.W; Wörndle, Sarah; Creaser, Robert A; Rainbird, Robert H; Skulski, Thomas M; Halverson, Galen P (2017). "Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis" (PDF). Geology. 46 (2): 135–138. doi:10.1130/G39829.1.