This article includes a list of general references, but it lacks sufficient corresponding inline citations .(November 2011) |
Bangia | |
---|---|
Bangia fuscopurpurea | |
Scientific classification | |
(unranked): | Archaeplastida |
Division: | Rhodophyta |
Class: | Bangiophyceae |
Order: | Bangiales |
Family: | Bangiaceae |
Genus: | Bangia Lyngbye, 1819 [1] |
Type species | |
Bangia atropurpurea [2] | |
Species | |
Synonyms [4] | |
|
Bangia is an extant genus of division Rhodophyta that grows in marine or freshwater habitats. Bangia has small thalli with rapid growth and high reproductive output, and exhibits behavior characteristic of r-selected species. The plants are attached by down-growing rhizoids, usually in dense purple-black to rust-colored clumps. The chloroplasts of Bangia, like others in the division Rhodophyta, contain chlorophyll a and sometimes chlorophyll d, as well as accessory pigments such as phycobilin pigments and xanthophylls. Depending on the relative proportions of these pigments and the light conditions, the overall color of the plant can range from green to red to purple to grey; however, the red pigment, phycoerythrin, is usually dominant.
Bangia is a red alga that arises from a discoid holdfast and short stipe consisting of the extensions of rhizoidal cells. Bangia has unbranched, erect thalli forming initially uniseriate filaments becoming multiseriate at maturity. The plant is composed of filiform, unbranched cylinders of cells embedded in a firm gelatinous matrix. The cell contains a stellate chloroplast with prominent pyrenoid, as well as single thylakoids (characteristic of division Rhodophyta). The growth of Bangia is diffuse and intercalary, and each cell is quadrate to rectangular in shape. Primary pitt connections are absent in all but the conchocelis stage.
Bangia grows in freshwater or in marine habitats, usually forming dense clumps or mats, and occur throughout the intertidal area and subtidally to the maximum depth at which benthic algae occur. The plants are usually attached to a solid substratum (rock or shell), but can also occur as epiphytes attached to other algae.
Marine populations of Bangia in the Atlantic Ocean are common food for the periwinkle Littorina littorea .
Species of Bangia undergo a heteromorphic alternation of generation life cycle in which the haploid generation is dominant. Reproduction can be either sexual or asexual; sexual plants occur mainly during the cold season of the year, while at other times the thalli often bear monosporangia only. Bangia, like all Rhodophytes, lack motile sperm and so depend upon water currents to transport their gametes to the trichogyne (receptive area of the female gamete or carpogonium).
All sexual reproduction in rhodophytes is oogamous. Carposporangia are formed through direct division of the zygote. Carpospores germinate to form the diploid filamentous conchocelis phase, which produces conchosporangial branches bearing conchosporangia, each containing a single conchospore. These conchospores then germinate to form gametophytes. During the "conchocelis stage", the plants can also self-replicate using monospores. The monospores develop directly into new plants and may germinate within the sporangia.
Silicified peritidal carbonate rocks have been found off Somerset Island, arctic Canada, which contain fossils of well-preserved bangiophyte red algae ( Bangiomorpha ). Because these fossils have multiseriate filaments derived by longitudinal divisions from uniseriate filaments, taxonomists believe that these fossils are related to Bangia. This resolution distinguished these fossils from other pre-Ediacaran eukaryotes and contributes to evidence that multicellular algae diversified before the Ediacaran radiation of large animals.
Bangiadulcis and Pseudobangia were previously thought to be part of the genus Bangia. However, it has since been discovered that these plants can only undergo asexual reproduction through the formation of archaeosporangia. In fact, sexual reproduction has so far only been recorded in Bangia, Porphyra , Erythrotrichia and Erythrocladia .
The genus was named after Niels Hofman Bang (1803–1886), the Danish patron of Hans Christian Lyngbye, who described the genus. [6]
Gracilaria is a genus of red algae (Rhodophyta) notable for its economic importance as an agarophyte, as well as its use as a food for humans and various species of shellfish. Various species in the genus are cultivated among Asia, South America, Africa and Oceania.
Porphyra is a genus of coldwater seaweeds that grow in cold, shallow seawater. More specifically, it belongs to red algae phylum of laver species, comprising approximately 70 species. It grows in the intertidal zone, typically between the upper intertidal zone and the splash zone in cold waters of temperate oceans. In East Asia, it is used to produce the sea vegetable products nori and gim. There are considered to be 60–70 species of Porphyra worldwide and seven around Britain and Ireland, where it has been traditionally used to produce edible sea vegetables on the Irish Sea coast. The species Porphyra purpurea has one of the largest plastid genomes known, with 251 genes.
Halymenia a genus of a macroscopic red algae that grows in oceans worldwide.
Scytonema is a genus of photosynthetic cyanobacteria that contains over 100 species. It grows in filaments that form dark mats. Many species are aquatic and are either free-floating or grow attached to a submerged substrate, while others species grow on terrestrial rocks, wood, soil, or plants. Scytonema is a nitrogen fixer, and can provide fixed nitrogen to the leaves of plants on which it is growing. Some species of Scytonema form a symbiotic relationship with fungi to produce a lichen.
Hildenbrandia is a genus of thalloid red alga comprising about 26 species. The slow-growing, non-mineralized thalli take a crustose form. Hildenbrandia reproduces by means of conceptacles and produces tetraspores.
Bangiales is an order of multicellular red algae of the class Bangiophyceae containing the families Bangiaceae, Granufilaceae, and possibly the extinct genus Rafatazmia with one species, Rafatazmia chitrakootensis. They are one of the oldest eukaryotic organisms, possibly dating back to 1.6 billion years old. Many species are used today as food in different cultures worldwide. Their size ranges from microscopic (Bangiomorpha) to up to a meter long. Many species are affected by Pythium porphyrae, a parasitic oomycete. Similar to many other species of red algae, they reproduce both asexually and sexually. They can be both filamentous or foliose, and are found worldwide.
Laurencia is a genus of red algae that grow in temperate and tropical shore areas, in littoral to sublittoral habitats, at depths up to 65 m (213 ft).
Stypopodium is a genus of thalloid brown alga in the family Dictyotaceae. Members of the genus are found in shallow tropical and subtropical seas around Africa, Pakistan, India, Japan, Indonesia, Australia, Micronesia, the Caribbean, Venezuela, and Brazil.
Ectocarpus is a genus of filamentous brown alga that is a model organism for the genomics of multicellularity. Among possible model organisms in the brown algae, Ectocarpus was selected for the relatively small size of its mature thallus and the speed with which it completes its life cycle. Tools available for Ectocarpus as a model species include a high quailty genome sequence and both forward and reverse genetic methodologies, the latter based on CRISPR-Cas9.
Hypnea is a genus of red algae, and a well known carrageenophyte.
Stylonema alsidii is a species of marine red algae. The type locality is Trieste in Italy, but it has a worldwide distribution.
Bangiaceae is a family of red algae in the order Bangiales. It contains laver, used to make laverbread, and various species in the genus of Pyropia are used to make nori.
Dictyota is a genus of brown seaweed in the family Dictyotaceae. Species are predominantly found in tropical and subtropical seas, and are known to contain numerous chemicals (diterpenes) which have potential medicinal value. As at the end of 2017, some 237 different diterpenes had been identified from across the genus.
Callithamniaceae is a family of red algae (Rhodophyta) in the order Ceramiales. The family was first described by Friedrich Traugott Kützing in 1843.
Callithamnion is a genus of algae belonging to the family Callithamniaceae.