Barber–Say syndrome

Last updated
Barber Say syndrome
Other namesHypertrichosis-atrophic skin-ectropion-macrostomia syndrome
Autosomal dominant - en.svg
Barber-Say syndrome has an autosomal dominant pattern of inheritance
Usual onsetNeonatal

Barber-Say syndrome (BSS) is a very rare congenital disorder associated with excessive hair growth (hypertrichosis), fragile (atrophic) skin, eyelid deformities (ectropion), and an overly broad mouth (macrostomia). [1]

Contents

Barber-Say syndrome is phenotypically similar to Ablepharon macrostomia syndrome, which is also associated with dominant mutations in TWIST2. [2]

Signs and symptoms

Genetics

Multiple cases of parent-to-child transmission suggest that Barber-Say syndrome exhibits autosomal dominant inheritance. [3] Exome sequencing and expression studies have shown that BSS is caused by mutations in the TWIST2 gene that affect a highly conserved residue of TWIST2 (twist-related protein 2). TWIST2 is a basic helix-loop-helix transcription factor that binds to E-box DNA motifs (5'-CANNTG-3') as a heterodimer and inhibits transcriptional activation. [4] Because TWIST2 mediates mesenchymal stem cell differentiation [5] and prevents premature or ectopic osteoblast differentiation, [6] mutations in TWIST2 that disrupt these functions by altering DNA-binding activity could explain many of the phenotypes of BSS. [2]

Diagnosis

Epidemiology

The prevalence of Barber Say syndrome is less than 1 in 1,000,000. [7] As of 2017, only 15 cases have been reported in the literature. [8]

Related Research Articles

<span class="mw-page-title-main">Saethre–Chotzen syndrome</span> Medical condition

Saethre–Chotzen syndrome (SCS), also known as acrocephalosyndactyly type III, is a rare congenital disorder associated with craniosynostosis. This affects the shape of the head and face, resulting in a cone-shaped head and an asymmetrical face. Individuals with SCS also have droopy eyelids (ptosis), widely spaced eyes (hypertelorism), and minor abnormalities of the hands and feet (syndactyly). Individuals with more severe cases of SCS may have mild to moderate intellectual or learning disabilities. Depending on the level of severity, some individuals with SCS may require some form of medical or surgical intervention. Most individuals with SCS live fairly normal lives, regardless of whether medical treatment is needed or not.

<span class="mw-page-title-main">GATA1</span> Protein-coding gene in humans

GATA-binding factor 1 or GATA-1 is the founding member of the GATA family of transcription factors. This protein is widely expressed throughout vertebrate species. In humans and mice, it is encoded by the GATA1 and Gata1 genes, respectively. These genes are located on the X chromosome in both species.

<span class="mw-page-title-main">FOXC2</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein C2 (FOXC2) also known as forkhead-related protein FKHL14 (FKHL14), transcription factor FKH-14, or mesenchyme fork head protein 1 (MFH1) is a protein that in humans is encoded by the FOXC2 gene. FOXC2 is a member of the fork head box (FOX) family of transcription factors.

<span class="mw-page-title-main">Twist-related protein 1</span> Transcription factor protein

Twist-related protein 1 (TWIST1) also known as class A basic helix–loop–helix protein 38 (bHLHa38) is a basic helix-loop-helix transcription factor that in humans is encoded by the TWIST1 gene.

<span class="mw-page-title-main">Microphthalmia-associated transcription factor</span> Mammalian protein found in Homo sapiens

Microphthalmia-associated transcription factor also known as class E basic helix-loop-helix protein 32 or bHLHe32 is a protein that in humans is encoded by the MITF gene.

<span class="mw-page-title-main">Hay–Wells syndrome</span> Medical condition

Hay–Wells syndrome is one of at least 150 known types of ectodermal dysplasia. These disorders affect tissues that arise from the ectodermal germ layer, such as skin, hair, and nails.

<span class="mw-page-title-main">Ablepharon macrostomia syndrome</span> Medical condition

Ablepharon macrostomia syndrome (AMS) is an extremely rare, autosomal dominant genetic disorder characterized by abnormal phenotypic appearances that primarily affect the head and face as well as the skull, skin, fingers and genitals. AMS generally results in abnormal ectoderm-derived structures. The most prominent abnormality is the underdevelopment (microblepharon) or absence of eyelids – signifying the ablepharon aspect of the disease – and a wide, fish-like mouth – macrostomia. Infants presenting with AMS may also have malformations of the abdominal wall and nipples. Children with AMS might also experience issues with learning development, language difficulties and intellectual disabilities.

<span class="mw-page-title-main">TCF4</span> Protein-coding gene in the species Homo sapiens

Transcription factor 4 (TCF-4) also known as immunoglobulin transcription factor 2 (ITF-2) is a protein that in humans is encoded by the TCF4 gene located on chromosome 18q21.2.

<span class="mw-page-title-main">Forkhead box C1</span> Protein-coding gene in the species Homo sapiens

Forkhead box C1, also known as FOXC1, is a protein which in humans is encoded by the FOXC1 gene.

<span class="mw-page-title-main">FOXL2</span> Transcription factor gene of the FOX family

Forkhead box protein L2 is a protein that in humans is encoded by the FOXL2 gene.

<span class="mw-page-title-main">HES1</span> Protein-coding gene in the species Homo sapiens

Transcription factor HES1 is a protein that is encoded by the Hes1 gene, and is the mammalian homolog of the hairy gene in Drosophila. HES1 is one of the seven members of the Hes gene family (HES1-7). Hes genes code nuclear proteins that suppress transcription.

<span class="mw-page-title-main">SIM2</span> Protein-coding gene in the species Homo sapiens

Single-minded homolog 2 is a protein that in humans is encoded by the SIM2 gene. It plays a major role in the development of the central nervous system midline as well as the construction of the face and head.

<span class="mw-page-title-main">ID4</span> Protein-coding gene in humans

ID4 is a protein coding gene. In humans, it encodes for the protein known as DNA-binding protein inhibitor ID-4. This protein is known to be involved in the regulation of many cellular processes during both prenatal development and tumorigenesis. This is inclusive of embryonic cellular growth, senescence, cellular differentiation, apoptosis, and as an oncogene in angiogenesis.

<span class="mw-page-title-main">HAND1</span> Protein-coding gene in the species Homo sapiens

Heart- and neural crest derivatives-expressed protein 1 is a protein that in humans is encoded by the HAND1 gene.

<span class="mw-page-title-main">Twist-related protein 2</span> Protein-coding gene in the species Homo sapiens

Twist-related protein 2 is a protein that in humans is encoded by the TWIST2 gene. The protein encoded by this gene is a basic helix-loop-helix (bHLH) transcription factor and shares similarity with another bHLH transcription factor, TWIST1. bHLH transcription factors have been implicated in cell lineage determination and differentiation. It is thought that during osteoblast development, this protein may inhibit osteoblast maturation and maintain cells in a preosteoblast phenotype.

<span class="mw-page-title-main">POU3F4</span> Protein-coding gene in the species Homo sapiens

POU domain, class 3, transcription factor 4 is a protein that in humans is encoded by the POU3F4 gene found on the X chromosome.

FG syndrome (FGS) is a rare genetic syndrome caused by one or more recessive genes located on the X chromosome and causing physical anomalies and developmental delays. FG syndrome was named after the first letters of the surnames of the first patients noted with the disease. First reported by American geneticists John M. Opitz and Elisabeth G. Kaveggia in 1974, its major clinical features include intellectual disability, hyperactivity, hypotonia, and a characteristic facial appearance including macrocephaly.

Macrostomia refers to a mouth that is unusually wide. The term is from the Greek prefix makro- meaning "large" and from Greek στόμα, "mouth".

<span class="mw-page-title-main">Branchio-oculo-facial syndrome</span> Medical condition

Branchio-oculo-facial syndrome (BOFS) is a disease that arises from a mutation in the TFAP2A gene. It is a rare autosomal dominant disorder that starts to affect a child's development before birth. Symptoms of this condition include skin abnormalities on the neck, deformities of the ears and eyes, and other distinctive facial features such a cleft lip along with slow growth, mental retardation and premature graying of hair.

<span class="mw-page-title-main">HES7 gene</span> Protein-coding gene in humans

(HES7) or bHLHb37 is protein coding mammalian gene found on chromosome 17 in humans. HES7 is a member of the Hairy and Enhancer of Split families of Basic helix-loop-helix proteins. The gene product is a transcription factor and is expressed cyclically in the presomitic mesoderm as part of the Notch signalling pathway. HES7 is involved in the segmentation of somites from the presomitic mesoderm in vertebrates. The HES7 gene is self-regulated by a negative feedback loop in which the gene product can bind to its own promoter. This causes the gene to be expressed in an oscillatory manner. The HES7 protein also represses expression of Lunatic Fringe (LFNG) thereby both directly and indirectly regulating the Notch signalling pathway. Mutations in HES7 can result in deformities of the spine, ribs and heart. Spondylocostal dysostosis is a common disease caused by mutations in the HES7 gene. The inheritance pattern of Spondylocostal dysostosis is autosomal recessive.

References

  1. "Barber Say syndrome | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program". rarediseases.info.nih.gov. Retrieved 2019-01-21.
  2. 1 2 Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, et al. (July 2015). "Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes". American Journal of Human Genetics. 97 (1): 99–110. doi:10.1016/j.ajhg.2015.05.017. PMC   4572501 . PMID   26119818.
  3. Online Mendelian Inheritance in Man (OMIM): BARBER-SAY SYNDROME; BBRSAY - 209885
  4. Universal protein resource accession number Q8WVJ9 for "TWIST2 – Twist-related protein 2 – Homo sapiens (Human) – TWIST2 gene & protein " at UniProt.
  5. Isenmann S, Arthur A, Zannettino AC, Turner JL, Shi S, Glackin CA, Gronthos S (October 2009). "TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment". Stem Cells. 27 (10): 2457–68. doi: 10.1002/stem.181 . PMID   19609939. S2CID   5353857.
  6. Lee MS, Lowe G, Flanagan S, Kuchler K, Glackin CA (November 2000). "Human Dermo-1 has attributes similar to twist in early bone development". Bone. 27 (5): 591–602. doi:10.1016/S8756-3282(00)00380-X. PMID   11062344.
  7. "Orphanet: Barber Say syndrome". www.orpha.net. January 2014. Retrieved 2019-01-21.
  8. Yohannan MD, Hilgeman J, Allsbrook K (July 2017). "TWIST2 gene mutation". Clinical Case Reports. 5 (7): 1167–1169. doi:10.1002/ccr3.1014. PMC   5494409 . PMID   28680619.