Cornelia de Lange syndrome

Last updated
Cornelia de Lange syndrome
Other namesBushy syndrome
Eli CDLS.JPG
One-year-old boy displaying characteristic facial features of Cornelia de Lange syndrome
Specialty Medical genetics   OOjs UI icon edit-ltr-progressive.svg

Cornelia de Lange syndrome (CdLS) is a genetic disorder. People with Cornelia de Lange syndrome experience a range of physical, cognitive, and medical challenges ranging from mild to severe. Cornelia de Lange syndrome has a widely varied phenotype, meaning people with the syndrome have varied features and challenges. The typical features of CdLS include thick or long eyebrows, a small nose, small stature, developmental delay, long or smooth philtrum, thin upper lip and downturned mouth. [1]

Contents

The syndrome is named after Dutch pediatrician Cornelia Catharina de Lange, who described it in 1933.

It is often termed Brachmann de Lange syndrome or Bushy syndrome and is also known as Amsterdam dwarfism. Its exact incidence is unknown, but it is estimated at 1 in 10,000 to 30,000.

Signs and symptoms

The phenotype of CdLS is highly varied and is described as a spectrum; from Classic CdLS (with a greater number of key features) to mild variations with only a few features. Some people will have a small number of features but do not have CdLS. [1]

Key features:

Other suggestive features:

The following health conditions are more common in people with CdLS than in the general population.

Children with this syndrome are often found to have long eyelashes, bushy eyebrows and synophrys (joined eyebrows). Body hair can be excessive and affected individuals are often shorter than their immediate family members. They present a characteristic facial phenotype. [2]

Children with CdLS often have gastrointestinal tract difficulties, particularly gastroesophageal reflux. Vomiting, intermittent poor appetite, constipation, diarrhea or gaseous distention are known to be a regularity in cases where the GI tract problems are acute. Symptoms may range from mild to severe.

People with CdLS may exhibit behaviours that have been described as "autistic-like," including self-stimulation, aggression, self-injury or strong preference to a structured routine. Behavior problems in CdLS are not inevitable. Many behaviour issues associated with CdLS are reactive (i.e., something happens within the person's body or environment to bring on the behavior) and cyclical (comes and goes). Often, an underlying medical issue, pain, social anxiety, environmental or caregiver stress can be associated with a change in behaviour. If pain or a medical issue is the cause, once treated, the behaviour diminishes.

There is evidence for some features of premature aging including the early development of Barrett's esophagus, osteoporosis present in the teenage years, premature greying of hair and some changes to the skin of the face causing a more aged appearance compared to chronological age. [3]

Causes

The vast majority of cases are thought to be due to spontaneous genetic mutations. [1] It can be associated with mutations affecting the cohesin complex. [4] [5]

As of 2018, it was confirmed that 500 genetic mutations have been associated with the condition, occurring on seven different genes. In around 30% of cases of CdLS the genetic cause remains undiscovered. The wide variation in phenotype is attributed to a high degree of somatic mosaicism in CdLS as well as the different genes and type of mutations. For this reason people with CdLS can have very different appearance, abilities, and associated health issues. [1]

Name OMIM GeneAppx. %Notes
CDLS1 122470 NIPBL 50%A gene responsible for CdLS on chromosome 5 was discovered in 2004 jointly by researchers at the Children's Hospital of Philadelphia, USA [6] and researchers at Newcastle University, UK. [7]
CDLS2 300590 SMC1A 5%In 2006, a second gene, on the X chromosome, was found by Italian scientists.
CDLS3 610759 SMC3 1%A third gene discovery was announced in 2007. The gene is on chromosome 10 and was also discovered by the research team in Philadelphia.

Missense mutations in the latter two genes seem to correlate with a milder form of the syndrome. [3]

In 2004, researchers at the Children's Hospital of Philadelphia (United States) and the University of Newcastle upon Tyne (England) identified a gene (NIPBL) on chromosome 5 that causes CdLS when it is mutated. Since then, additional genes have been found (SMC1A, SMC3 and HDAC8, RAD21) that cause CdLS when changed. In July 2012, the fourth "CdLS gene"—HDAC8—was announced. HDAC8 is an X-linked gene, meaning it is located on the X chromosome. Individuals with CdLS who have the gene change in HDAC8 make up just a small portion of all people with CdLS. [8] Evidence of a linkage at chromosome 3q26.3 is mixed. [9]

Genetic alterations associated with CdLS have been identified in genes NIPBL , SMC1A and SMC3 as well as the more recently identified genes RAD21 and HDAC8 . [10] All of these genetic alterations occurring in CdLS patients affect proteins that function in the cohesin pathway. [10] SMC1A, SMC3 and RAD21 proteins are structural components of the cohesin ring complex. NIPBL is involved in the loading of the cohesin ring onto chromosomes, and HDAC8 deacylates SMC3 to facilitate its function. The cohesin pathway is involved in cohesion of sister chromatids during mitosis, DNA repair, chromosome segregation and the regulation of developmental gene expression. Defects in these functions are theorised to underlie some of the features of CdLS. [11] In particular, defective DNA repair may underlie the features of premature aging. [3]

Diagnosis

The diagnosis of CdLS is primarily based on clinical findings by a clinical geneticist, and in some cases may be confirmed through laboratory testing. [1]

Treatment

Often, an interdisciplinary approach is recommended to treat the issues associated with CdLS. A team for promoting the child's well-being often includes speech, occupational and physical therapists, teachers, physicians, and parents. [12]

Cornelia de Lange syndrome (CdLS) affects many different systems of the body, medical management is often provided by a team of doctors and other healthcare professionals. Treatment for this condition varies based on the signs and symptoms present in each person. It may include:

Research into CdLS is ongoing.

History

The first documented case was in 1916 by Winfried Robert Clemens Brachmann (1888-1969), a German physician who wrote about the distinct features of the disease from his 19-year-old patient [14] . Walther Johann Brachmann was qualified in medicine in 1913 and obtained an appointment as a clinical assistant at the children's hospital in Güttingen [15] . While working at this hospital in 1916, he observed a 19-day-old child who died of pneumonia and wrote a detailed report on the case. His report consisted of several features of the disease that had not been mentioned before in the history of pediatric medicine [16] .The boy died, however, on the nineteen-day from malnutrition. The child had significant malformations and Brachmann indicated the most conspicuous anomaly as ” Monodactyl due to ulnar defect, with Flight skin formation in the elbows “. In addition, the child was very young and showed excessive? hair growth. His facial features were also abnormal, especially the widening of the forehead. As Brachmann concluded in his article, the tendency for variations or anomalies in this individual was unmistakable. Since Brachmann was called to military action in the First World War, his research on the specific condition of the boy was stopped [17] . Later in 1933, Cornelia Catharina de Lange (1871-1951), a Dutch pediatrician redescribed it and the disorder has named to her. She enrolled in the University of Zurich to study chemistry but changed her focus to medicine in 1892. She crossed the prejudices of her time, studying to become a physician. She graduated from the University of Amsterdam in 1897, becoming the fifth woman physician to qualify in the Netherlands. However, because pediatrics did not exist as a specialty in the Netherlands, De Lange moved to Switzerland, where she worked in the children's hospital in Zurich under Oskar Wyss [18] . Cornelia de Lange's patients were two girls with unusual facies and mental retardation, one 17 months and the other 6 months, who were admitted within weeks of each other to Emma Children's Hospital [19] . The first child had pneumonia. Her first year of life had been characterized by a lot of feeding difficulties and she was very small for her age, with a proportionately smaller head circumference. The second child had the same medical problem, and their resemblance to each other was remarkable. De Lange termed the condition "un type nouveau de dégénération" (typus Amstelodamensis). This account attracted little attention but in 1941, after she had presented a further case to the Amsterdam Neurological Society, the disorder gained recognition. Initially, Winfried Brachmann had described a similar patient in 1916. His report was based on the clinical and autopsy features of an who died of pneumonia at the age of 19 days. Cornelia de Lange probably overlooked his report because he concentrated on characteristics of the upper limbs and wrote on the facial symptoms less specifically. De Lange conducted microscopic research on blood and urine and took X-rays too. She described an anomaly of the skull, to which she referred as brachycephaly. She described the somatic and behavioral phenotype to define a “mental development disease”. At the time she based this diagnosis simply on behavioral observations without verification through psychological evaluation, which could have indicated the degree of intellectual disability. Subsequently, de Lange described the malformations of the limbs, “Small, chubby hands and feet, short fingers of both hands and feet, little finger curved towards the ring finger. Thumb and ball of the thumb in a position more proximal than usual, thus gave the hand a certain resemblance to the foot of the orang and the chimpanzee.”. Two months after the first girl’s description, another girl was hospitalized with pneumonia. The similarity between the first and this second girl was so striking that the nurses thought the first girl had returned: “These children were so alike that the nurses who had cared for the first sick girl exclaimed: “Here is W.E. back! But, thinking for a moment, they added. “No, it is not possible, this child is younger than W.E.” After carefully observing the girl, De Lange concluded that the second girl showed the same characteristics as the first one. Since the two children weren’t related, she supposed she was dealing with two isolated cases. De Lange believed the condition was caused by genetic abnormalities. In order to promote knowledge of the phenomenon she stressed that new cases had to be found for further examination of the syndrome. In 1938, De Lange published a second paper reporting a clinical series of five cases: a third girl with the same features and two cases published by Vedder [20] . In addition to performing neurological and radiographic examination, De Lange also collected the data from the autopsy performed on one of the first two girls she observed and reported the results of the macroscopic and microscopic examination of the cerebral hemispheres. This child died at five years and nine months in an asylum. No abnormalities were found in the organs of the chest and endocrine system. The peritoneum, however, had shown anomalies that are common among mammals, but not among humans. In addition, microscopic tests of the right hemisphere had revealed a reduced number of brain wraps. Again, De Lange was aware that further studies were needed to unravel the underlying pathological anatomy of the identified condition. However, with both her articles, in 1933 and 1938, De Lange described a rare new condition called “typus Amstelodamensis”. In her discovery, her meticulous observations of the specific phenotypic abnormalities had been crucial. Furthermore, her research in the anatomo-pathological abnormalities was supportive in unveiling the first knowledge of the endo-phenotype of these clinical cases [21] . In a review in 1985, John Marius Opitz commented: "Brachmann's paper is a classic of Western Medical iconography, deserving to be commemorated in the eponym "Brachmann- de Lange syndrome." This conjoined eponym is now generally accepted, although the term "de Lange" or Cornelia de Lange's syndrome is also common. This condition is described sometimes as one syndrome, sometimes as two [22] .

See also

Related Research Articles

<span class="mw-page-title-main">Noonan syndrome</span> Genetic condition involving facial, heart, blood and skeletal features

Noonan syndrome (NS) is a genetic disorder that may present with mildly unusual facial features, short height, congenital heart disease, bleeding problems, and skeletal malformations. Facial features include widely spaced eyes, light-colored eyes, low-set ears, a short neck, and a small lower jaw. Heart problems may include pulmonary valve stenosis. The breast bone may either protrude or be sunken, while the spine may be abnormally curved. Intelligence is often normal. Complications of NS can include leukemia.

<span class="mw-page-title-main">Rubinstein–Taybi syndrome</span> Rare genetic condition

Rubinstein–Taybi syndrome (RTS) is a rare genetic condition characterized by short stature, moderate to severe learning difficulties, distinctive facial features, and broad thumbs and first toes. Other features of the disorder vary among affected individuals. These characteristics are caused by a mutation or deletion in the CREBBP gene, located on chromosome 16, and/or the EP300 gene, located on chromosome 22.

<span class="mw-page-title-main">Duane-radial ray syndrome</span> Medical condition

Duane-radial ray syndrome, also known as Okihiro syndrome, is a rare autosomal dominant disorder that primarily affects the eyes and causes abnormalities of bones in the arms and hands. This disorder is considered to be a SALL4-related disorder due to the SALL4 gene mutations leading to these abnormalities. It is diagnosed by clinical findings on a physical exam as well as genetic testing and imaging. After being diagnosed, there are other evaluations that one may go through in order to determine the extent of the disease. There are various treatments for the symptoms of this disorder.

<span class="mw-page-title-main">Ectrodactyly–ectodermal dysplasia–cleft syndrome</span> Medical condition

Ectrodactyly–ectodermal dysplasia–cleft syndrome, or EEC, and also referred to as EEC syndrome and split hand–split foot–ectodermal dysplasia–cleft syndrome is a rare form of ectodermal dysplasia, an autosomal dominant disorder inherited as a genetic trait. EEC is characterized by the triad of ectrodactyly, ectodermal dysplasia, and facial clefts. Other features noted in association with EEC include vesicoureteral reflux, recurrent urinary tract infections, obstruction of the nasolacrimal duct, decreased pigmentation of the hair and skin, missing or abnormal teeth, enamel hypoplasia, absent punctae in the lower eyelids, photophobia, occasional cognitive impairment and kidney anomalies, and conductive hearing loss.

<span class="mw-page-title-main">NIPBL</span> Protein-coding gene in the species Homo sapiens

Nipped-B-like protein (NIPBL), also known as SCC2 or delangin is a protein that in humans is encoded by the NIPBL gene. NIPBL is required for the association of cohesin with DNA and is the major subunit of the cohesin loading complex. Heterozygous mutations in NIPBL account for an estimated 60% of case of Cornelia de Lange Syndrome.

<span class="mw-page-title-main">SMC1A</span> Protein-coding gene in humans

Structural maintenance of chromosomes protein 1A (SMC1A) is a protein that in humans is encoded by the SMC1A gene. SMC1A is a subunit of the cohesin complex which mediates sister chromatid cohesion, homologous recombination and DNA looping. In somatic cells, cohesin is formed of SMC1A, SMC3, RAD21 and either SA1 or SA2 whereas in meiosis, cohesin is formed of SMC3, SMC1B, REC8 and SA3.

Weaver syndrome is a rare autosomal dominant genetic disorder associated with rapid growth beginning in the prenatal period and continuing through the toddler and youth years. It is characterized by advanced osseous maturation and distinctive craniofacial, skeletal and neurological abnormalities. It is similar to Sotos syndrome and is classified as an overgrowth syndrome.

<span class="mw-page-title-main">RAD21</span> Protein-coding gene in humans

Double-strand-break repair protein rad21 homolog is a protein that in humans is encoded by the RAD21 gene. RAD21, an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1A, SMC3, and SCC3 [ STAG1 (SA1) and STAG2 (SA2) in multicellular organisms] proteins, involved in sister chromatid cohesion.

<span class="mw-page-title-main">SMC3</span> Protein-coding gene in humans

Structural maintenance of chromosomes protein 3 (SMC3) is a protein that in humans is encoded by the SMC3 gene. SMC3 is a subunit of the Cohesin complex which mediates sister chromatid cohesion, homologous recombination and DNA looping. Cohesin is formed of SMC3, SMC1, RAD21 and either SA1 or SA2. In humans, SMC3 is present in all cohesin complexes whereas there are multiple paralogs for the other subunits.

<span class="mw-page-title-main">STAG2</span> Protein-coding gene in humans

Cohesin subunit SA-2 (SA2) is a protein that in humans is encoded by the STAG2 gene. SA2 is a subunit of the Cohesin complex which mediates sister chromatid cohesion, homologous recombination and DNA looping. In somatic cells cohesin is formed of SMC3, SMC1, RAD21 and either SA1 or SA2 whereas in meiosis, cohesin is formed of SMC3, SMC1B, REC8 and SA3.

<span class="mw-page-title-main">SMC2</span> Protein-coding gene in the species Homo sapiens

Structural maintenance of chromosomes protein 2 (SMC-2), also known as chromosome-associated protein E (CAP-E), is a protein that in humans is encoded by the SMC2 gene. SMC2 is part of the SMC protein family and is a core subunit of condensin I and II, large protein complexes involved in chromosome condensation, overall organization. Several studies have demonstrated the necessity of SMC2 for cell division and proliferation.

Wilson-Turner syndrome (WTS), also known as mental retardation X linked syndromic 6 (MRXS6), and mental retardation X linked with gynecomastia and obesity is a congenital condition characterized by intellectual disability and associated with childhood-onset obesity. It is found to be linked to the X chromosome and caused by a mutation in the HDAC8 gene, which is located on the q arm at locus 13.1. Individuals with Wilson–Turner syndrome have a spectrum of physical characteristics including dysmorphic facial features, hypogonadism, and short stature. Females generally have milder phenotypes than males. This disorder affects all demographics equally and is seen in less than one in one million people.

<span class="mw-page-title-main">Pitt–Hopkins syndrome</span> Medical condition

Pitt–Hopkins syndrome (PTHS) is a rare genetic disorder characterized by developmental delay, epilepsy, distinctive facial features, and possible intermittent hyperventilation followed by apnea. Pitt–Hopkins syndrome can be marked by intellectual disabilities as well as problems with socializing. It is part of the clinical spectrum of Rett-like syndromes.

Sister chromatid cohesion refers to the process by which sister chromatids are paired and held together during certain phases of the cell cycle. Establishment of sister chromatid cohesion is the process by which chromatin-associated cohesin protein becomes competent to physically bind together the sister chromatids. In general, cohesion is established during S phase as DNA is replicated, and is lost when chromosomes segregate during mitosis and meiosis. Some studies have suggested that cohesion aids in aligning the kinetochores during mitosis by forcing the kinetochores to face opposite cell poles.

Wiedemann–Steiner syndrome(WSS) is a rare genetic disorder that causes developmental delay, unusual facial features, short stature, and reduction in muscle tone (hypotonia). The syndrome was originally described in 1989 by Hans-Rudolf Wiedemann. The genetic basis for the syndrome was identified by Dr. Wendy D. Jones in 2012. The first case was reported in 1989 by Wiedemann and colleagues which reported a Caucasian boy with pre- and postnatal growth deficiency, psychomotor delay, and a round and flat face, short nose, widely spaced eyes, long philtrum, short palpebral fissures, low-set ears, and high-arched palate. Other findings included an alternating convergent squint, dilatation of the renal calyces, and short and thick limbs. Later decades brought about more finding and descriptions of this disorder.

<span class="mw-page-title-main">Bainbridge–Ropers syndrome</span> Human genetic disorder

Bainbridge–Ropers syndrome was first identified in 2013 and is characterized by failure to thrive, feeding problems, hypotonia, intellectual disabilities, autism, postnatal growth delay, abnormal facial features such as arched eyebrows, anteverted nares, and delays in language acquisition. BRPS is extremely rare worldwide; more than thirty cases of BRPS have been reported abroad, and four cases have been reported in China.

<span class="mw-page-title-main">17q12 microdeletion syndrome</span> Rare genetic anomaly in humans

17q12 microdeletion syndrome, also known as 17q12 deletion syndrome, is a rare chromosomal anomaly caused by the deletion of a small amount of material from a region in the long arm of chromosome 17. It is typified by deletion of the HNF1B gene, resulting in kidney abnormalities and renal cysts and diabetes syndrome. It also has neurocognitive effects, and has been implicated as a genetic factor for autism and schizophrenia.

<span class="mw-page-title-main">Ring chromosome 22</span> Rare chromosomal disorder

Ring chromosome 22, also known as ring 22, is a rare chromosomal disorder. Ring chromosomes occur when the ends of a chromosome lose material and fuse into a ring shape; in the case of ring 22, this occurs for chromosome 22, the last numbered human autosome. Ring chromosome 22 is marked by a number of consistent traits, such as intellectual disability, speech delay, hypotonia, and hyperactivity. The condition has a similar phenotype to Phelan-McDermid syndrome, as the loss of the SHANK3 gene is implicated in both.

<span class="mw-page-title-main">Oto-palato-digital syndrome</span> X-linked recessive genetic disorders

Oto-palato-digital syndrome is the generalised term for two conditions, oto-palato-digital syndrome type I (OPD1) and oto-palato-digital syndrome type II (OPD2), that are both X-linked recessive genetic disorders with overlapping phenotypes. The most severe phenotypes of each syndrome occur only in males, with females generally having attenuated forms of the condition, although this does not apply to all individual cases. Some writers conceptualise oto-palato-digital syndrome as a spectrum disorder including two similarly-presenting genetic syndromes, frontometaphyseal dysplasia and Melnick-Needles syndrome.

<span class="mw-page-title-main">Spondyloenchondrodysplasia</span> Medical condition

Spondyloenchondrodysplasia is the medical term for a rare spectrum of symptoms that are inherited following an autosomal recessive inheritance pattern. Skeletal anomalies are the usual symptoms of the disorder, although its phenotypical nature is highly variable among patients with the condition, including symptoms such as muscle spasticity or thrombocytopenia purpura. It is a type of immunoosseous dysplasia.

References

  1. 1 2 3 4 5 Kline, Antonie D.; Moss, Joanna F.; Selicorni, Angelo; Bisgaard, Anne-Marie; Deardorff, Matthew A.; Gillett, Peter M.; Ishman, Stacey L.; Kerr, Lynne M.; Levin, Alex V.; Mulder, Paul A.; Ramos, Feliciano J.; Wierzba, Jolanta; Ajmone, Paola Francesca; Axtell, David; Blagowidow, Natalie; Cereda, Anna; Costantino, Antonella; Cormier-Daire, Valerie; FitzPatrick, David; Grados, Marco; Groves, Laura; Guthrie, Whitney; Huisman, Sylvia; Kaiser, Frank J.; Koekkoek, Gerritjan; Levis, Mary; Mariani, Milena; McCleery, Joseph P.; Menke, Leonie A.; Metrena, Amy; O'Connor, Julia; Oliver, Chris; Pie, Juan; Piening, Sigrid; Potter, Carol J.; Quaglio, Ana L.; Redeker, Egbert; Richman, David; Rigamonti, Claudia; Shi, Angell; Tümer, Zeynep; Van Balkom, Ingrid D. C.; Hennekam, Raoul C. (October 2018). "Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement". Nature Reviews Genetics. 19 (10): 649–666. doi:10.1038/s41576-018-0031-0. PMC   7136165 . PMID   29995837.
  2. Basel-Vanagaite, L.; Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.D.; Deardoff, M.A. (2016). "Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis". Clinical Genetics. 89 (5): 557–563. doi:10.1111/cge.12716. PMID   26663098. S2CID   45748040.
  3. 1 2 3 Kline AD, Grados M, Sponseller P, Levy HP, Blagowidow N, Schoedel C, Rampolla J, Clemens DK, Krantz I, Kimball A, Pichard C, Tuchman D (2007). "Natural history of aging in Cornelia de Lange syndrome". Am J Med Genet C Semin Med Genet. 145C (3): 248–60. doi:10.1002/ajmg.c.30137. PMC   4902018 . PMID   17640042.
  4. Liu, J; Krantz, ID (October 2009). "Cornelia de Lange syndrome, cohesin, and beyond". Clinical Genetics. 76 (4): 303–314. doi:10.1111/j.1399-0004.2009.01271.x. PMC   2853897 . PMID   19793304.
  5. Panarotto, Melanie (April 2022). "Cornelia de Lange syndrome mutations in NIPBL can impair cohesin-mediated DNA loop extrusion". PNAS. 119 (18): e2201029119. Bibcode:2022PNAS..11901029P. doi: 10.1073/pnas.2201029119 . PMC   9170158 . PMID   35476527. https://www.pnas.org/doi/full/10.1073/pnas.2201029119
  6. Krantz, Ian D; McCallum, Jennifer; DeScipio, Cheryl; Kaur, Maninder; Gillis, Lynette A; Yaeger, Dinah; Jukofsky, Lori; Wasserman, Nora; Bottani, Armand; Morris, Colleen A; Nowaczyk, Malgorzata J M; Toriello, Helga; Bamshad, Michael J; Carey, John C; Rappaport, Eric; Kawauchi, Shimako; Lander, Arthur D; Calof, Anne L; Li, Hui-hua; Devoto, Marcella; Jackson, Laird G (June 2004). "Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B". Nature Genetics. 36 (6): 631–635. doi:10.1038/ng1364. PMC   4902017 . PMID   15146186.
  7. Tonkin E, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004). "NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome". Nature Genetics. 36 (6): 636–641. doi: 10.1038/ng1363 . PMID   15146185.
  8. "HDAC8 FAQ Sheet" (PDF). CdLS Foundation Web site. Cornelia de Lange Syndrome Foundation. Archived from the original (PDF) on 3 September 2013. Retrieved 12 February 2013.
  9. Krantz, Ian D.; Tonkin, Emma; Smith, Melanie; Devoto, Marcella; Bottani, Armand; Simpson, Claire; Hofreiter, Mary; Abraham, Vinod; Jukofsky, Lori; Conti, Brian P.; Strachan, Tom; Jackson, Laird (2001). "Exclusion of linkage to the CDL1 gene region on chromosome 3q26.3 in some familial cases of Cornelia de Lange syndrome". American Journal of Medical Genetics. 101 (2): 120–129. doi:10.1002/1096-8628(20010615)101:2<120::AID-AJMG1319>3.0.CO;2-G. PMC   4896160 . PMID   11391654.
  10. 1 2 Boyle, M.I.; Jespersgaard, C.; Brøndum-Nielsen, K.; Bisgaard, A.-M.; Tümer, Z. (July 2015). "Cornelia de Lange syndrome". Clinical Genetics. 88 (1): 1–12. doi:10.1111/cge.12499. PMID   25209348. S2CID   37580405.
  11. Pié, Juan; Gil-Rodríguez, María Concepción; Ciero, Milagros; López-Viñas, Eduardo; Ribate, María Pilar; Arnedo, María; Deardorff, Matthew A.; Puisac, Beatriz; Legarreta, Jesús; de Karam, Juan Carlos; Rubio, Encarnación; Bueno, Inés; Baldellou, Antonio; Calvo, Mª Teresa; Casals, Nuria; Olivares, José Luis; Losada, Ana; Hegardt, Fausto G.; Krantz, Ian D.; Gómez-Puertas, Paulino; Ramos, Feliciano J. (April 2010). "Mutations and variants in the cohesion factor genes NIPBL , SMC1A , and SMC3 in a cohort of 30 unrelated patients with Cornelia de Lange syndrome". American Journal of Medical Genetics Part A. 152A (4): 924–929. doi:10.1002/ajmg.a.33348. PMC   2923429 . PMID   20358602.
  12. "CdLS Foundation – Treatment Protocols". 12 February 2013. Retrieved 12 February 2013.
  13. "Cornelia de Lange syndrome | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program". rarediseases.info.nih.gov. Retrieved 10 September 2021.
  14. "Winfried Robert Clemens Brachmann". www.whonamedit.com. Retrieved 2024-03-21.
  15. Wiesmann, U. N.; DiDonato, S.; Herschkowitz, N. N. (1975-10-27). "Effect of chloroquine on cultured fibroblasts: release of lysosomal hydrolases and inhibition of their uptake". Biochemical and Biophysical Research Communications. 66 (4): 1338–1343. doi:10.1016/0006-291x(75)90506-9. ISSN   1090-2104. PMID   4.
  16. River, Volt (2021-05-28). "BIOGRAFÍAS MÉDICAS ILUSTRADAS: DR. WINFRIED ROBERT CLEMENS BRACHMANN". BIOGRAFÍAS MÉDICAS ILUSTRADAS. Retrieved 2024-03-21.
  17. "De Lange - WiNEu". 2020-07-06. Retrieved 2024-03-21.
  18. "Cornelia Catharina de Lange". www.whonamedit.com. Retrieved 2024-03-21.
  19. "De Lange - WiNEu". 2020-07-06. Retrieved 2024-03-21.
  20. Middelhoven., Ada (November 1950). "PROFESSOR CORNELIA DE LANGE IN MEMORIAM". Acta Paediatrica. 39 (1): 177–178. doi:10.1111/j.1651-2227.1950.tb08518.x. ISSN   0803-5253.
  21. Friedel, Georges (1933). "Sur un nouveau type de macles". Bulletin de la Société française de Minéralogie. 56 (4): 262–274. doi:10.3406/bulmi.1933.4170. ISSN   0366-3248.
  22. Opitz, John M.; Reynolds, James F. (September 1985). "The Brachmann‐de Lange syndrome". American Journal of Medical Genetics. 22 (1): 89–102. doi:10.1002/ajmg.1320220110. ISSN   0148-7299.