Ablepharon macrostomia syndrome

Last updated
Ablepharon macrostomia syndrome
Autosomal dominant - en.svg
Ablepharon macrostomia syndrome has an autosomal dominant mode of inheritance.

Ablepharon macrostomia syndrome (AMS) is an extremely rare, autosomal dominant genetic disorder characterized by abnormal phenotypic appearances that primarily affect the head and face as well as the skull, skin, fingers and genitals. AMS generally results in abnormal ectoderm-derived structures. [1] The most prominent abnormality is the underdevelopment (microblepharon) or absence of eyelids – signifying the ablepharon aspect of the disease – and a wide, fish-like mouth – macrostomia. Recent scholars and surgeons have called into question the naming of the condition as "Ablepharon" on account of recent investigation and histology showing consistent evidence of at least some eyelid tissue. [2] [3] Infants presenting with AMS may also have malformations of the abdominal wall and nipples. Children with AMS might also experience issues with learning development, language difficulties and intellectual disabilities.

Contents

AMS is caused by mutations in the TWIST2 gene, among others. It is closely related to Barber–Say syndrome in terms of phenotypic abnormalities.

Signs and symptoms

AMS is generally characterized by abnormal appearances of the skin, eyes, fingers, genitals, head and face. Infants with AMS will have thin, redundantly wrinkled skin and excessive facial creases; [4] wide-set eyes with absent or severely underdeveloped eyelids and down-turned lower eyelids; and a wide, fish-like mouth that may be fused together at the corners. Other appearances of the face and head include: broad nasal bridge, wide, flared nostrils and thick and flared alae nasi (edges of the nostrils). [4]

Abnormalities can also be seen in the hands and fingers, as infants with AMS will also have webbed fingers with limited ability to flex and extend the fingers. [5] Infants with AMS will also display small, rudimentary ears that are atypically low-set on the skull. Absence of the zygomatic bone is also possible. Skin may be dry and coarse, excessively wrinkled around the face and loose around the hands yet tight around the finger joints, leading to diminished use of the fingers. [1] [5]

Genital defects may include: ambiguous genitalia, a displaced and/or atypically small penis (micropenis), an absent scrotum around the testes and undescended testicles. Finally, alopecia and thin, sparse hair are also frequently observed.[ citation needed ]

Causes

Like Barber–Say syndrome, AMS is caused by mutations in the TWIST2 gene that affect a highly conserved residue of TWIST2 (twist-related protein 2). TWIST2 is a basic helix-loop-helix transcription factor that binds to E-box DNA motifs (5'-CANNTG-3') as a heterodimer and inhibits transcriptional activation. [6] Because TWIST2 mediates mesenchymal stem cell differentiation [7] and prevents premature or ectopic osteoblast differentiation, [8] mutations in TWIST2 that disrupt these functions by altering DNA-binding activity could explain many of the phenotypes of AMS. [9] Current research points to the substitution of the wild-type amino acid for Lysine at TWIST2 residue 75 as a significant genetic cause of AMS. [9]

AMS is inherited in an autosomal dominant manner, in which an affected individual needs only one copy of the mutant allele in order to express the disease. [9] [10]

Mechanism

The mesenchyme is a mesodermal embryonic tissue that can develop into a multitude of different tissues depending on the needs of the developing embryo. The mesenchyme can develop into blood, cartilage, and membranes. In a normal patient, TWIST2 is highly expressed during embryonic development, specifically in the craniofacial development and chondrogenisis. TWIST2 works to prevent the premature maturation of chondrogenic cells and osteoblasts, the cells that will form cartilage and bone respectively. The dominant mutation in TWIST2 leads to the chondrogenic and osteoblastic cells becoming mature prematurely. This then leads to the primary craniofacial deformities seen in AMS patients. [9]

Diagnosis

Ablepharon macrostomia syndrome can be diagnosed at birth by identification of characteristic physical findings, clinical evaluation, and specialized imaging techniques such as CT scans. [11] CT scans can confirm the absence of the zygomatic arch and abnormalities in the cranial and mandibular bones. An ophthalmologist can diagnose abnormalities in the eyelids and confirm microblepharon or ablepharon. Teams of specialists will typically work together to confirm diagnosis and assess treatment options. Pediatricians, gastroenterologists, dermatologists, urologists, and other care providers can be expected to aid in the diagnosis and treatment.[ citation needed ]

Treatment

Primary treatment focuses on relief of immediate symptoms such as providing lubrication to the eyes to relieve pain and dryness; antibiotics may also be prescribed to prevent infections and inflammation. Surgical measures can be taken and a plastic surgeon can correct the lack of eyelids through reconstructive surgery. [11] The surgical correction of the eyelids is considered a surgical emergency during the neonatal period, as eyelids serve critical functions in lubricating and protecting the cornea from drying out and maintaining optimal visual and facial aesthetic outcomes. [3] Current approaches to eyelid reconstruction involve recessing the levator aponeurosis, widening the shortened septum seen in the eyelids of these patients, and thus descending the lid margin over the fissure before utilizing subsequent skin grafts. [2]

Surgery to correct malformations of the mouth, ears, genitals, fingers, and skin can also be performed as necessary. Macrostomia, the wide, fish-like mouth, can be corrected by a maxillofacial surgeon. The skin can be treated by means of creams to alleviate dryness and coarseness; in certain cases, botulinum toxin and skin grafts were used to improve the overall appearance. It is highly recommended that patients are able to seek the help of pediatric psychologists throughout the entire treatment process. [12]

Prognosis

While there is no cure for AMS, treatment plans provided by doctors can help improve development, [13] overall quality of life, and physical appearance. Physical appearance cannot be corrected to the "norm" but the life expectancy of patients diagnosed with AMS is normal. [14]

Research

Current research into AMS focuses on both underlying causes of the disease and surgical methods for treatment. Currently, a study in Tokyo, Japan is focusing on the role of other TWIST genes in AMS development, specifically the role of TWIST1 and the amino acid substitution that must occur to mutate the gene. TWIST1 mutations are believed to lead to craniosynostosis and ablepharon. [15]

Clinical research focuses on the different surgical techniques used to treat the ablepharon aspect of AMS. The primary goal of such research is to determine which methods are most effective for the patient without being unnecessarily complex. According to a study conducted by the departments of ophthalmology in São Paulo and Lima, Peru, full thickness skin grafts have been shown to effectively treat microblepharon in patients with AMS without needing complicated surgeries. [16]

Related Research Articles

<span class="mw-page-title-main">Ehlers–Danlos syndrome</span> Group of genetic connective tissues disorders

Ehlers–Danlos syndromes (EDS) are a group of 13 genetic connective-tissue disorders. Symptoms often include loose joints, joint pain, stretchy velvety skin, and abnormal scar formation. These may be noticed at birth or in early childhood. Complications may include aortic dissection, joint dislocations, scoliosis, chronic pain, or early osteoarthritis. The current classification was last updated in 2017, when a number of rarer forms of EDS were added.

<span class="mw-page-title-main">Treacher Collins syndrome</span> Human genetic disorder

Treacher Collins syndrome (TCS) is a genetic disorder characterized by deformities of the ears, eyes, cheekbones, and chin. The degree to which a person is affected, however, may vary from mild to severe. Complications may include breathing problems, problems seeing, cleft palate, and hearing loss. Those affected generally have normal intelligence.

<span class="mw-page-title-main">Benign tumor</span> Mass of cells which cannot spread throughout the body

A benign tumor is a mass of cells (tumor) that does not invade neighboring tissue or metastasize. Compared to malignant (cancerous) tumors, benign tumors generally have a slower growth rate. Benign tumors have relatively well differentiated cells. They are often surrounded by an outer surface or stay contained within the epithelium. Common examples of benign tumors include moles and uterine fibroids.

<span class="mw-page-title-main">Saethre–Chotzen syndrome</span> Medical condition

Saethre–Chotzen syndrome (SCS), also known as acrocephalosyndactyly type III, is a rare congenital disorder associated with craniosynostosis. This affects the shape of the head and face, resulting in a cone-shaped head and an asymmetrical face. Individuals with SCS also have droopy eyelids (ptosis), widely spaced eyes (hypertelorism), and minor abnormalities of the hands and feet (syndactyly). Individuals with more severe cases of SCS may have mild to moderate intellectual or learning disabilities. Depending on the level of severity, some individuals with SCS may require some form of medical or surgical intervention. Most individuals with SCS live fairly normal lives, regardless of whether medical treatment is needed or not.

<span class="mw-page-title-main">Fraser syndrome</span> Recessive genetic disorder involving eye and genital abnormalities

Fraser syndrome is an autosomal recessive congenital disorder, identified by several developmental anomalies. Fraser syndrome is named for the geneticist George R. Fraser, who first described the syndrome in 1962.

<span class="mw-page-title-main">Simpson–Golabi–Behmel syndrome</span> Congenital disorder

Simpson–Golabi–Behmel syndrome (SGBS), is a rare inherited congenital disorder that can cause craniofacial, skeletal, vascular, cardiac, and renal abnormalities. There is a high prevalence of cancer associated in those with SGBS which includes wilms tumors, neuroblastoma, tumors of the adrenal gland, liver, lungs and abdominal organs. The syndrome is inherited in an X-linked recessive manner. Females that possess one copy of the mutation are considered to be carriers of the syndrome but may still express varying degrees of the phenotype, suffering mild to severe malady. Males experience a higher likelihood of fetal death.

<span class="mw-page-title-main">Pallister–Hall syndrome</span> Medical condition

Pallister–Hall syndrome (PHS) is a rare genetic disorder that affects various body systems. The main features are a non-cancerous mass on the hypothalamus and extra digits (polydactylism). The prevalence of Pallister-Hall Syndrome is unknown; about 100 cases have been reported in publication.

<span class="mw-page-title-main">Acrocephalosyndactyly</span> Group of diseases

Acrocephalosyndactyly is a group of congenital conditions characterized by irregular features of the face and skull (craniosynostosis) and hands and feet (syndactyly). Craniosynostosis occurs when the cranial sutures, the fibrous tissue connecting the skull bones, fuse the cranial bones early in development. Cranial sutures allow the skull bones to continue growing until they fuse at age 24. Premature fusing of the cranial sutures can result in alterations to the skull shape and interfere with brain growth. Syndactyly occurs when digits of the hands or feet are fused together. When polydactyly is also present, the classification is acrocephalopolysyndactyly. Polydactyly occurs when the hands or feet possess additional digits. Acrocephalosyndactyly is usually diagnosed after birth, although prenatal diagnosis is sometimes possible if the genetic variation is present in family members, as the conditions are typically inherited in an autosomal dominant pattern Treatment often involves surgery in early childhood to correct for craniosynostosis and syndactyly.

<span class="mw-page-title-main">Twist-related protein 1</span> Transcription factor protein

Twist-related protein 1 (TWIST1) also known as class A basic helix–loop–helix protein 38 (bHLHa38) is a basic helix-loop-helix transcription factor that in humans is encoded by the TWIST1 gene.

<span class="mw-page-title-main">Hay–Wells syndrome</span> Medical condition

Hay–Wells syndrome is one of at least 150 known types of ectodermal dysplasia. These disorders affect tissues that arise from the ectodermal germ layer, such as skin, hair, and nails.

<span class="mw-page-title-main">Twist-related protein 2</span> Protein-coding gene in the species Homo sapiens

Twist-related protein 2 is a protein that in humans is encoded by the TWIST2 gene. The protein encoded by this gene is a basic helix-loop-helix (bHLH) transcription factor and shares similarity with another bHLH transcription factor, TWIST1. bHLH transcription factors have been implicated in cell lineage determination and differentiation. It is thought that during osteoblast development, this protein may inhibit osteoblast maturation and maintain cells in a preosteoblast phenotype.

<span class="mw-page-title-main">Frank–Ter Haar syndrome</span> Medical condition

Frank–Ter Haar syndrome (FTHS), also known as Ter Haar-syndrome, is a rare disease characterized by abnormalities that affect bone, heart, and eye development. Children born with the disease usually die very young.

<span class="mw-page-title-main">Antley–Bixler syndrome</span> Congenital disorder

Antley–Bixler syndrome is a rare, severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.

<span class="mw-page-title-main">Frontonasal dysplasia</span> Medical condition

Frontonasal dysplasia (FND) is a congenital malformation of the midface. For the diagnosis of FND, a patient should present at least two of the following characteristics: hypertelorism, a wide nasal root, vertical midline cleft of the nose and/or upper lip, cleft of the wings of the nose, malformed nasal tip, encephalocele or V-shaped hair pattern on the forehead. The cause of FND remains unknown. FND seems to be sporadic (random) and multiple environmental factors are suggested as possible causes for the syndrome. However, in some families multiple cases of FND were reported, which suggests a genetic cause of FND.

<span class="mw-page-title-main">Macrostomia</span> Unusually wide mouth

Macrostomia refers to a mouth that is unusually wide. The term is from the Greek prefix makro- meaning "large" and from Greek στόμα, "mouth".

<span class="mw-page-title-main">Roberts syndrome</span> Medical condition

Roberts syndrome, or sometimes called pseudothalidomide syndrome, is an extremely rare autosomal recessive genetic disorder that is characterized by mild to severe prenatal retardation or disruption of cell division, leading to malformation of the bones in the skull, face, arms, and legs.

A facial cleft is an opening or gap in the face, or a malformation of a part of the face. Facial clefts is a collective term for all sorts of clefts. All structures like bone, soft tissue, skin etc. can be affected. Facial clefts are extremely rare congenital anomalies. There are many variations of a type of clefting and classifications are needed to describe and classify all types of clefting. Facial clefts hardly ever occur isolated; most of the time there is an overlap of adjacent facial clefts.

Nasodigitoacoustic syndrome, also called Keipert syndrome, is a rare congenital syndrome first described by J.A. Keipert and colleagues in 1973. The syndrome is characterized by a misshaped nose, broad thumbs and halluces, brachydactyly, sensorineural hearing loss, facial features such as hypertelorism, and developmental delay.

<span class="mw-page-title-main">Barber–Say syndrome</span> Medical condition

Barber-Say syndrome (BSS) is a very rare congenital disorder associated with excessive hair growth (hypertrichosis), fragile (atrophic) skin, eyelid deformities (ectropion), and an overly broad mouth (macrostomia).

Filippi syndrome, also known as Syndactyly Type I with Microcephaly and Mental Retardation, is a very rare autosomal recessive genetic disease. Only a very limited number of cases have been reported to date. Filippi Syndrome is associated with diverse symptoms of varying severity across affected individuals, for example malformation of digits, craniofacial abnormalities, intellectual disability, and growth retardation. The diagnosis of Filippi Syndrome can be done through clinical observation, radiography, and genetic testing. Filippi Syndrome cannot be cured directly as of 2022, hence the main focus of treatments is on tackling the symptoms observed on affected individuals. It was first reported in 1985.

References

  1. 1 2 Ciriaco P, Carretta A, Negri G (August 2019). "Laryngo-tracheal stenosis in a woman with ablepharon macrostomia syndrome". BMC Pulmonary Medicine. 19 (1): 163. doi: 10.1186/s12890-019-0921-8 . PMC   6712709 . PMID   31462237.
  2. 1 2 Cruz AA, Quiroz D, Boza T, Wambier SP, Akaishi PS (2019). "Long-Term Results of the Surgical Management of the Upper Eyelids in "Ablepharon"-Macrostomia Syndrome". Ophthalmic Plastic and Reconstructive Surgery. 36 (1): 21–25. doi: 10.1097/IOP.0000000000001442 . PMID   31373987.
  3. 1 2 "Ablepharon Macrostomia Syndrome". EyeWiki. Retrieved 2024-02-08.
  4. 1 2 De Maria B, Mazzanti L, Roche N, Hennekam RC (August 2016). "Barber-Say syndrome and Ablepharon-Macrostomia syndrome: An overview". American Journal of Medical Genetics. Part A. 170 (8): 1989–2001. doi:10.1002/ajmg.a.37757. PMID   27196381. S2CID   25639844.
  5. 1 2 "Ablepharon-Macrostomia Syndrome". NORD (National Organization for Rare Disorders). Retrieved 2019-11-07.
  6. "TWIST2 - Twist-related protein 2 - Homo sapiens (Human) - TWIST2 gene & protein". www.uniprot.org. Retrieved 2019-01-25.
  7. Isenmann S, Arthur A, Zannettino AC, Turner JL, Shi S, Glackin CA, et al. (October 2009). "TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment". Stem Cells. 27 (10): 2457–68. doi: 10.1002/stem.181 . PMID   19609939. S2CID   5353857.
  8. Lee MS, Lowe G, Flanagan S, Kuchler K, Glackin CA (November 2000). "Human Dermo-1 has attributes similar to twist in early bone development". Bone. 27 (5): 591–602. doi:10.1016/S8756-3282(00)00380-X. PMID   11062344.
  9. 1 2 3 4 Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, et al. (July 2015). "Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes". American Journal of Human Genetics. 97 (1): 99–110. doi:10.1016/j.ajhg.2015.05.017. PMC   4572501 . PMID   26119818.
  10. Rohena L, Kuehn D, Marchegiani S, Higginson JD (April 2011). "Evidence for autosomal dominant inheritance of ablepharon-macrostomia syndrome". American Journal of Medical Genetics. Part A. 155A (4): 850–4. doi:10.1002/ajmg.a.33900. PMID   21595001. S2CID   38165699.
  11. 1 2 "Ablepharon-Macrostomia Syndrome". NORD (National Organization for Rare Disorders). Retrieved 2019-04-19.
  12. Larumbe J, Villalta P, Velez I (2011). "Clinical variant of ablepharon macrostomia syndrome". Case Reports in Dermatological Medicine. 2011: 593045. doi: 10.1155/2011/593045 . PMC   3504267 . PMID   23198177.
  13. "Ablepharon macrostomia syndrome". Global Genes. Retrieved 2019-12-13.
  14. "Ablepharon-Macrostomia Syndrome | Hereditary Ocular Diseases". disorders.eyes.arizona.edu. Retrieved 2019-12-13.
  15. Takenouchi T, Sakamoto Y, Sato H, Suzuki H, Uehara T, Ohsone Y, et al. (December 2018). "Ablepharon and craniosynostosis in a patient with a localized TWIST1 basic domain substitution". American Journal of Medical Genetics. Part A. 176 (12): 2777–2780. doi:10.1002/ajmg.a.40525. PMID   30450715. S2CID   53948440.
  16. Cruz AA, Quiroz D, Boza T, Wambier SP, Akaishi PS (2020). "Long-Term Results of the Surgical Management of the Upper Eyelids in "Ablepharon"-Macrostomia Syndrome". Ophthalmic Plastic and Reconstructive Surgery. 36 (1): 21–25. doi:10.1097/IOP.0000000000001442. PMID   31373987. S2CID   199387709.