Beaver Creek Fire | |
---|---|
Date(s) | August 7, 2013 – August 31, 2013 |
Location | Blaine and Camas counties, Idaho, United States |
Statistics | |
Burned area | 114,900 acres (46,498 ha) |
Impacts | |
Damage | Estimated over $25 million [1] |
Map | |
Map of Beaver Creek Fire and Past Fires Affected Area |
The Beaver Creek Fire was a forest fire that began on August 7, 2013 after a lightning strike [2] in an area twelve miles northeast of Fairfield, Idaho [3] and northwest of Hailey, Idaho [4] in Sawtooth National Forest. The fire burned through pine trees, [5] sagebrush, timber in the understory, grass, and various riparian areas. [4] The fire coated the resort areas of Hailey, Ketchum, and Sun Valley, in a layer of thick soot and ash. [5] By the time the fire was fully contained on August 31, 114,900 acres of the Ketchum Ranger District of Sawtooth National Forest has been burned. [6] Of the 114,900 acres burned, 57,000 acres were moderately damaged and 9,500 acres were severely damaged. [7]
The area where the Beaver Creek Fire took place has seen several fires since 2000. The Castle Rock Fire took place in 2007 near this area and before that the 2001 Sage Fire. The Beaver Creek Fire was easily the biggest of these three. [8] The Beaver Creek Fire is extremely similar to the Castle Rock Fire. The Castle Rock Fire was started by lightning, exactly like the Beaver Creek Fire. Both fires began around the same time. The Castle Rock Fire began August 16, and the Beaver Creek Fire began August 7. Neither fire killed any people. The Castle Rock fire burnt 48,520 acres, the first "mega-fire" in the area, caused widespread evacuation in the height of tourist season and threatened both the town and the ski area, as did the later Beaver Creek fire. Both fires were attacked very early with small crews, but escaped to become huge fires. The threat to the Sun Valley area by these fires, which both started upwind of the resort was not at first recognized to be serious. Both would require enormous resources to control. [9] Both fires affected their ecosystem in similar ways and will use similar recovery methods. For a fire to cause as much damage as the Beaver Creek Fire, several factors play a part in the behavior of the fire. The behavior of fire depends on weather, fuel, and topographic information. [10]
The Beaver Creek Fire was a large fire, larger than the past fires in the same area. [8] Large fires that burn many acres usually occur in hot, dry temperatures where there is intense build-up of vegetation. Where there is more vegetation build-up, there is more fuel for a fire. Large fires are usually difficult to suppress, fast moving, and displace many native species. [11] In the beginning of the Beaver Creek Fire, the conditions in the area were dry, windy, low humidity, and a fairly hot temperature, which causes more active fires. [5] Along with these factors and the fact that the area of the Beaver Creek Fire is a disturbance dependent ecosystem that was in its season where natural fires usually occurred caused the Beaver Creek Fire to grow to be the large, mainly surface fire it became. With the combination of weather, fuel, and topography that the Beaver Creek Fire took place in, it was hard to stop. Not until humidity increased, some rainstorms began to take place, and cloud cover appeared in the area was the Beaver Creek Fire able to be drastically slowed and contained. [5]
Fire can have negative effects such as presenting the opportunity for noxious and invasive plants to take over. Invasive plants can compete with native plants for water and soil causing the death of the native plants. The death of native plants leads to a loss of habitat and less food for native animals causing their populations to shrink. [11] Invasive plants can affect the growth and spread rate of wildfires based on the invasive plant's moisture content, location, and type of fuel. [12] An example of an invasive species in the area of the Beaver Creek Fire is cheat grass, Bromus tectorum. [13] Cheat grass sprouts before Idaho's native plants, thus taking growth area away from native plants and habitat away from native animals. Cheat grass affects fires in the area because it grows in a continuous bed of grass, unlike the local grasses that grow in patches, which can be burned through more rapidly than native grass causing faster moving fires. [11]
Invasive species can affect fire behavior. The area of the Beaver Creek Fire is known to be infested with Mountain Pine Beetles, Dendroctonus ponderosae. [10] Mountain Pine Beetles kill trees by latching on to trees, consuming bark, and laying eggs inside the tree tissue. [10] Trees able to reseed and grow continue to be attacked by the beetles. The tree mortality caused by the Mountain Pine Beetles increases fire hazard in the area and causes more high intensity fires. It is a proven fact the Mountain Pine Beetles have an increasing effect on the fire spread and fire intensity. [10] The more trees the Mountain Pine Beetle kills, the more large woody fuel falls to the ground causing increased fire intensity and severity. The first few years after the destruction from the beetle is the time period when large amounts of fine dead fuels are present and woody fuels that produces the highest intensity and severe fires. [10]
The Beaver Creek ecosystem is a disturbance-dependent ecosystem, and fire is part of its disturbance regime. Being a disturbance-dependent ecosystem means that the native animals and plants adapted to the disturbance and depend on the disturbance for their survival.
Plants in fire related disturbance-dependent ecosystems can have serotinous pines, or they have a resin over their seeds to delay seed release. [14] When the fire comes through it melts the resin and allows the seed to begin growing. [14] Germination timed to fire is another method for plant survival. Germination timed to fire means that chemicals in a plant will trigger its growth once the ground is heated to a certain temperature by a fire. Resource allocation, a plant able to disperse its seeds in a large area, helps with plant survival during fire as well. In the area where the Beaver Creek Fire took place, lodge pole pine trees and juniper trees are just two plants in the ecosystem that are fire-dependent. [11]
Animals in fire-dependent ecosystems have protective or survival methods just as plants do. Animals have internal mechanisms that cause them to reproduce around the fire disturbance regime, this is called reproductive timing. Animals can smell or sense a fire coming so they can either escape or hide to survive the fire. [15]
Fire is beneficial in fire-dependent ecosystems. Fire can increase soil nutrients, increase resource availability, decrease competition, decrease soil microorganisms, and control invasive species. [16] If no fire occurs for an extended period of time, plants can begin to crowd out new plant growth, such as sagebrush and grasses in the Beaver Creek Fire area, and cause habitat loss, for birds such as sage grouse. [11] Fire acts as a cleansing agent because "by burning dead trees and other vegetation along with the crowded plants and trees" [11] more space is made for new growth. The best type of fire for cleansing an ecosystem is a slow moving fire that burns few trees and lots of ground vegetation. These types of fires usually produce a "mosaic pattern", not all trees and vegetation is burned, so that there is a good mixture between new growth and fully matured plants. [11]
Wind speed and land slope, like a mountain where the Beaver Creek Fire took place, influences fire behavior, specifically the spread of the fire. Wind makes fire grow faster. [3] As wind speed increase, the spread of the fire increases more quickly [17] and can help increase the intensity of the fire. [10] Fire can even create some of its own wind to disperse the heat downward from the heart of the flame to the unburnt fuel ahead of the fire, which helps in the rate of spread of the fire and increases the longevity of the fire. [17] Some argue that the increase in the spread rate of the fire from the windy conditions has to do with the increased oxygen supply in the fire. [17] Others argue that this is not true because fires need a sufficient amount of oxygen to even start. [17] Without wind, it is easier to stop a fire due to the fire not being pushed forward. [3] Slope of land increases the spread of fire only and not the intensity. The reason for this is gravity pushes the fire down so that the area in front of the fire is heated up quicker and able to burn faster allowing the fire to burn more area in a period of time up a slope, even without wind, than just on flat ground. [17]
Many areas had to be evacuated due to the fire as it approached populated areas. The fire was also fought by thousands of firefighters and some groups of specialized firefighters, called hot shots. Hot Shots are groups brought into an area to contain a wildfire. [2] Eight helicopters with buckets attached filled with water mixed with a retardant were used [3] to contain the fire, along with helitankers, helicopters with a built in container for water. Humans fighting the fire tried to contain the fire and prevent "slop over", where the fire crosses a control line to an unburned side. Lines of trees were cleared or "sawcut" so the fire had less fuel and by digging a fire line down into the mineral soil to stop the fire whenever it reached the ditch helped with containment. [2] Firefighters even used the paths of past wildfires to help slow down the Beaver Creek Fire. [18] They accomplished this by forcing the fire towards the boundary of the past fire and into a natural barrier. [8] The last resort to stop the fire implemented by humans was the Governor of Idaho, Butch Otter, who declared the Beaver Creek Fire a state disaster area on August 14. This allowed the area more financial funds to fight the fire and more human resources, such as firefighters. [3] The fire entered the Wood River Valley through Greenhorn Gulch, a canyon halfway between the towns of Hailey and Ketchum, and to some extent, through Deer Creek Canyon, just to the south. One home in Greenhorn was destroyed by the fire but more than 25 other homes were saved by the efforts of firefighting crews.
Once the fire was contained the effects of the fire on the ecosystem do not stop there. The Beaver Creek Fire, first and foremost, gave new vegetation more room to grow and more access to sunlight for new trees. Grass will be the first to regrow and will begin to bring back wildlife. [11] The fire had a variety of effects on animals. During the fire the larger animals were able to easily escape from the fire, but the smaller animals could not. Many of the small burrowing mammals in the area probably could not survive the intense heat of the Beaver Creek Fire, or the smoke, and died. [15] Even if the fire decimates a native species, the species will eventually return to the area. Some animals will benefit from the fire. The elk will benefit from the new growth after the fire, and wasp and beetles will benefit because they can deposit their eggs in the burned stumps. [15] The ecosystem will return to maximum capacity after time; it is what disturbance-dependent ecosystems do. First the insects will return, followed by the birds, and then the mammals; this is referred to as primary succession. [15] The intense heat of the fire, combined with the massive amounts of ash, turned the soil into a condition known as hydrophobic, whereby water beads up upon and is effectively repelled by the soil. The resulting inability to absorb or percolate rainfall created dramatically altered drainage patterns. Very substantial rains in late August and early September 2013 caused a large number of debris flows down the hillsides and flooding in the Greenhorn area, resulting in serious damage to homes, roads and topography. The U.S. Geological Survey completed an analysis of the effect of the fire on drainage patterns and the risk of debris flows under three different rainfall scenarios within the area affected by the Beaver Creek Fire. [19]
The area of the Beaver Creek Fire is known for the Douglas-Fir Beetle, Dendroctonus pseudotsugae, [20] invading after fires. They invaded after the Castle Rock Fire. They can cause "undesired amounts of tree mortality" after a fire has taken place. For the beetles to "attack", they must be in adult stage, and there must be sufficient bark left for them to deposit their eggs on. The outbreak of the Douglas-Fir Beetles usually last up to 3 – 6 years. The beetles attack could be prolonged though since they will be attacking an area where fire recently took place. [21]
As soon as the fire ended, a Burned Area Emergency Response, BAER, team was sent to analyze the area of the Beaver Creek Fire. The BAER team conducts rapid assessments of watersheds with analyses of the fire affected area conducted by civil engineers and multi-discipline scientific specialists, such as soil scientists, hydrologists, geologists, biologists, botanists, silviculturists, and archeologists. [6] The team will go in to determine what areas were most severely affected by the fire, what emergency conditions exist, and what emergency response action should be taken. After this report of the area is taken, the BAER team may recommend rapid reseeding of the area, enlarging or unplugging culverts to drain water, removing structures that could block water flow, trap sediment, or impact water quality, or to post certain warning signs, barriers, or closures to limit hazardous area access. [6] Currently, the main recovery goal is to get the water off the trails as quickly as possible and to place hazard signs along the road and trails. [9] Erosion control is the next big goal. The goal is for erosion control to be implemented before the first big rainfall to, hopefully, stop mudslides from burying roads and private property. Erosion and mudslides are the biggest after fire dangers and can last 3 – 5 years. [22] Other plans for recovery include placing straw waddles down as erosion barriers, using bulldozers for reseeding, aerial dropping straw and mulch on intensely burned hillsides for drainage purposes, using log stabilizers to stop erosion, cleaning out and removing some culverts on the roads and adding over 1,000 new drainage structures to the trails impacted by the fire. [9]
Bromus tectorum, known as downy brome, drooping brome or cheatgrass, is a winter annual grass native to Europe, southwestern Asia, and northern Africa, but has become invasive in many other areas. It now is present in most of Europe, southern Russia, Japan, South Africa, Australia, New Zealand, Iceland, Greenland, North America and western Central Asia. In the eastern US B. tectorum is common along roadsides and as a crop weed, but usually does not dominate an ecosystem. It has become a dominant species in the Intermountain West and parts of Canada, and displays especially invasive behavior in the sagebrush steppe ecosystems where it has been listed as noxious weed. B. tectorum often enters the site in an area that has been disturbed, and then quickly expands into the surrounding area through its rapid growth and prolific seed production.
Pinus elliottii, commonly known as slash pine, is a conifer tree native to the Southeastern United States. Slash pine is named after the "slashes" – swampy ground overgrown with trees and bushes – that constitute its habitat. Other common names include swamp pine, yellow slash pine, and southern Florida pine. Slash pine has two different varieties: P. e. var. elliottii and P. e. var. densa. Historically, slash pine has been an important economic timber for naval stores, turpentine, and resin. The wood of slash pine is known for its unusually high strength, especially for a pine. It exceeds many hardwoods and is even comparable to very dense woods such as black ironwood.
A controlled or prescribed (Rx) burn is the practice of intentionally setting a fire to change the assemblage of vegetation and decaying material in a landscape. The purpose could be for forest management, ecological restoration, land clearing or wildfire fuel management. A controlled burn may also refer to the intentional burning of slash and fuels through burn piles. Controlled burns may also be referred to as hazard reduction burning, backfire, swailing or a burn-off. In industrialized countries, controlled burning regulations and permits are usually overseen by fire control authorities.
Fire ecology is a scientific discipline concerned with the effects of fire on natural ecosystems. Many ecosystems, particularly prairie, savanna, chaparral and coniferous forests, have evolved with fire as an essential contributor to habitat vitality and renewal. Many plant species in fire-affected environments use fire to germinate, establish, or to reproduce. Wildfire suppression not only endangers these species, but also the animals that depend upon them.
Boise National Forest is a National Forest covering 2,203,703 acres (8,918.07 km2) of the U.S. state of Idaho. Created on July 1, 1908, from part of Sawtooth National Forest, it is managed by the U.S. Forest Service as five units: the Cascade, Emmett, Idaho City, Lowman, and Mountain Home ranger districts.
Secondary succession is the secondary ecological succession of a plant's life. As opposed to the first, primary succession, secondary succession is a process started by an event that reduces an already established ecosystem to a smaller population of species, and as such secondary succession occurs on preexisting soil whereas primary succession usually occurs in a place lacking soil. Many factors can affect secondary succession, such as trophic interaction, initial composition, and competition-colonization trade-offs. The factors that control the increase in abundance of a species during succession may be determined mainly by seed production and dispersal, micro climate; landscape structure ; bulk density, pH, and soil texture.
In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.
Populus tremuloides is a deciduous tree native to cooler areas of North America, one of several species referred to by the common name aspen. It is commonly called quaking aspen, trembling aspen, American aspen, mountain or golden aspen, trembling poplar, white poplar, and popple, as well as others. The trees have tall trunks, up to 25 metres tall, with smooth pale bark, scarred with black. The glossy green leaves, dull beneath, become golden to yellow, rarely red, in autumn. The species often propagates through its roots to form large clonal groves originating from a shared root system. These roots are not rhizomes, as new growth develops from adventitious buds on the parent root system.
The Yellowstone fires of 1988 collectively formed the largest wildfire in the recorded history of Yellowstone National Park in the United States. Starting as many smaller individual fires, the flames quickly spread out of control due to drought conditions and increasing winds, combining into several large conflagrations which burned for several months. The fires almost destroyed two major visitor destinations and, on September 8, 1988, the entire park was closed to all non-emergency personnel for the first time in its history. Only the arrival of cool and moist weather in the late autumn brought the fires to an end. A total of 793,880 acres (3,213 km2), or 36 percent of the park, burned at varying levels of severity.
Temperate deciduous or temperate broad-leaf forests are a variety of temperate forest 'dominated' by deciduous trees that lose their leaves each winter. They represent one of Earth's major biomes, making up 9.69% of global land area. These forests are found in areas with distinct seasonal variation that cycle through warm, moist summers, cold winters, and moderate fall and spring seasons. They are most commonly found in the Northern Hemisphere, with particularly large regions in eastern North America, East Asia, and a large portion of Europe, though smaller regions of temperate deciduous forests are also located in South America. Examples of trees typically growing in the Northern Hemisphere's deciduous forests include oak, maple, basswood, beech and elm, while in the Southern Hemisphere, trees of the genus Nothofagus dominate this type of forest. Temperate deciduous forests provide several unique ecosystem services, including habitats for diverse wildlife, and they face a set of natural and human-induced disturbances that regularly alter their structure.
A fire regime is the pattern, frequency, and intensity of the bushfires and wildfires that prevail in an area over long periods of time. It is an integral part of fire ecology, and renewal for certain types of ecosystems. A fire regime describes the spatial and temporal patterns and ecosystem impacts of fire on the landscape, and provides an integrative approach to identifying the impacts of fire at an ecosystem or landscape level. If fires are too frequent, plants may be killed before they have matured, or before they have set sufficient seed to ensure population recovery. If fires are too infrequent, plants may mature, senesce, and die without ever releasing their seed.
Wildfire suppression in the United States has had a long and varied history. For most of the 20th century, any form of wildland fire, whether it was naturally caused or otherwise, was quickly suppressed for fear of uncontrollable and destructive conflagrations such as the Peshtigo Fire in 1871 and the Great Fire of 1910. In the 1960s, policies governing wildfire suppression changed due to ecological studies that recognized fire as a natural process necessary for new growth. Today, policies advocating complete fire suppression have been exchanged for those who encourage wildland fire use, or the allowing of fire to act as a tool, such as the case with controlled burns.
Pinyon–juniper woodland, also spelled piñon–juniper woodland, is a biome found mid-elevations in arid regions of the Western United States, characterized by being an open forest dominated by low, bushy, evergreen junipers, pinyon pines, and their associates. At lower elevations, junipers often predominate and trees are spaced widely, bordering on and mingling with grassland or shrubland, but as elevation increases, pinyon pines become common and trees grow closer, forming denser canopies. Historically, pinyon-juniper woodland provided a vital source of fuel and food for indigenous peoples of the American Southwest. The nuts continue to be a traditional indigenous food, and because nut-collecting was also adopted by the Spanish in the 1500s, the nuts are also traditionally harvested by some Hispanic communities.
The ecology of the Rocky Mountains is diverse due to the effects of a variety of environmental factors. The Rocky Mountains are the major mountain range in western North America, running from the far north of British Columbia in Canada to New Mexico in the southwestern United States, climbing from the Great Plains at or below 1,800 feet (550 m) to peaks of over 14,000 feet (4,300 m). Temperature and rainfall varies greatly also and thus the Rockies are home to a mixture of habitats including the alpine, subalpine and boreal habitats of the Northern Rocky Mountains in British Columbia and Alberta, the coniferous forests of Montana and Idaho, the wetlands and prairie where the Rockies meet the plains, a different mix of conifers on the Yellowstone Plateau in Wyoming, the montane forests of Utah, and in the high Rockies of Colorado and New Mexico, and finally the alpine tundra of the highest elevations.
Forestry mulching is a land clearing method that uses a single machine to cut, grind, and clear vegetation.
Ponderosa pine forest is a plant association and plant community dominated by ponderosa pine and found in western North America. It is found from the British Columbia to Durango, Mexico. In the south and east, ponderosa pine forest is the climax forest, while in the more northern part of its range, it can transition to Douglas-fir or grand fir, or white fir forests. Understory species depends on location. Fire suppression has led to insect outbreaks in ponderosa pine forests.
Complex early seral forests, or snag forests, are ecosystems that occupy potentially forested sites after a stand-replacement disturbance and before re-establishment of a closed forest canopy. They are generated by natural disturbances such as wildfire or insect outbreaks that reset ecological succession processes and follow a pathway that is influenced by biological legacies that were not removed during the initial disturbance. Complex early seral forests develop with rich biodiversity because the remaining biomass provides resources to many life forms and because of habitat heterogeneity provided by the disturbances that generated them. In this and other ways, complex early seral forests differ from simplified early successional forests created by logging. Complex early seral forest habitat is threatened from fire suppression, thinning, and post-fire or post-insect outbreak logging.
Species which are not native to a forest ecosystem can act as an agent of disturbance, changing forest dynamics as they invade and spread. Invasive insects and pathogens (diseases) are introduced to the United States through international trade, and spread through means of natural and human-dispersal. Invasive insects and pathogens are a serious threat to many forests in the United States and have decimated populations of several tree species, including American chestnut, American elm, eastern hemlock, whitebark pine, and the native ash species. The loss of these tree species is typically rapid with both short and long-term impacts to the forest ecosystem.
Fire adaptations are traits of plants and animals that help them survive wildfire or to use resources created by wildfire. These traits can help plants and animals increase their survival rates during a fire and/or reproduce offspring after a fire. Both plants and animals have multiple strategies for surviving and reproducing after fire. Plants in wildfire-prone ecosystems often survive through adaptations to their local fire regime. Such adaptations include physical protection against heat, increased growth after a fire event, and flammable materials that encourage fire and may eliminate competition.
The Northwestern Forested Mountains is a Level I ecoregion of North America designated by the Commission for Environmental Cooperation (CEC) in its North American Environmental Atlas.