Belyi's theorem

Last updated

In mathematics, Belyi's theorem on algebraic curves states that any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.

Contents

This is a result of G. V. Belyi from 1979. At the time it was considered surprising, and it spurred Grothendieck to develop his theory of dessins d'enfant, which describes non-singular algebraic curves over the algebraic numbers using combinatorial data.

Quotients of the upper half-plane

It follows that the Riemann surface in question can be taken to be the quotient

H

(where H is the upper half-plane and Γ is a subgroup of finite index in the modular group) compactified by cusps. Since the modular group has non-congruence subgroups, it is not the conclusion that any such curve is a modular curve.

Belyi functions

A Belyi function is a holomorphic map from a compact Riemann surface S to the complex projective line P1(C) ramified only over three points, which after a Möbius transformation may be taken to be . Belyi functions may be described combinatorially by dessins d'enfants.

Belyi functions and dessins d'enfants – but not Belyi's theorem – date at least to the work of Felix Klein; he used them in his article ( Klein 1879 ) to study an 11-fold cover of the complex projective line with monodromy group PSL(2,11). [1]

Applications

Belyi's theorem is an existence theorem for Belyi functions, and has subsequently been much used in the inverse Galois problem.

Related Research Articles

Riemann surface One-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

There have been several attempts in history to reach a unified theory of mathematics. Some of the greatest mathematicians have expressed views that the whole subject should be fitted into one theory.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. In particular it implies that every Riemann surface admits a Riemannian metric of constant curvature. For compact Riemann surfaces, those with universal cover the unit disk are precisely the hyperbolic surfaces of genus greater than 1, all with non-abelian fundamental group; those with universal cover the complex plane are the Riemann surfaces of genus 1, namely the complex tori or elliptic curves with fundamental group Z2; and those with universal cover the Riemann sphere are those of genus zero, namely the Riemann sphere itself, with trivial fundamental group.

Modular group Orientation-preserving mapping class group of the torus

In mathematics, the modular group is the projective special linear group PSL(2, Z) of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic.

Klein quartic Compact Riemann surface of genus 3

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group. The quartic was first described in.

In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R), and sometimes it is allowed to be a Kleinian group which is conjugate to a subgroup of PSL(2,R).

In mathematics, a prime geodesic on a hyperbolic surface is a primitive closed geodesic, i.e. a geodesic which is a closed curve that traces out its image exactly once. Such geodesics are called prime geodesics because, among other things, they obey an asymptotic distribution law similar to the prime number theorem.

In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Qn). The latter fact and its generalizations are of fundamental importance in number theory.

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(G/Γ) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

Kleinian group Discrete group of Möbius transformations

In mathematics, a Kleinian group is a discrete subgroup of PSL(2, C). The group PSL(2, C) of 2 by 2 complex matrices of determinant 1 modulo its center has several natural representations: as conformal transformations of the Riemann sphere, and as orientation-preserving isometries of 3-dimensional hyperbolic space H3, and as orientation-preserving conformal maps of the open unit ball B3 in R3 to itself. Therefore, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.

In mathematics, a dessin d'enfant is a type of graph embedding used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute Galois group of the rational numbers. The name of these embeddings is French for a "child's drawing"; its plural is either dessins d'enfant, "child's drawings", or dessins d'enfants, "children's drawings".

Icosahedral symmetry

A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron.

Absolute Galois group

In mathematics, the absolute Galois groupGK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group.

In mathematics, a Hilbert modular surface or Hilbert–Blumenthal surface is an algebraic surface obtained by taking a quotient of a product of two copies of the upper half-plane by a Hilbert modular group. More generally, a Hilbert modular variety is an algebraic variety obtained by taking a quotient of a product of multiple copies of the upper half-plane by a Hilbert modular group.

In abstract algebra, Abhyankar's conjecture is a 1957 conjecture of Shreeram Abhyankar, on the Galois groups of algebraic function fields of characteristic p. The soluble case was solved by Serre in 1990 and the full conjecture was proved in 1994 by work of Michel Raynaud and David Harbater.

In number theory, a Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over Q. Shimura varieties are not algebraic varieties but are families of algebraic varieties. Shimura curves are the one-dimensional Shimura varieties. Hilbert modular surfaces and Siegel modular varieties are among the best known classes of Shimura varieties.

Hurwitz surface

In Riemann surface theory and hyperbolic geometry, a Hurwitz surface, named after Adolf Hurwitz, is a compact Riemann surface with precisely 84(g − 1) automorphisms, where g is the genus of the surface. This number is maximal by virtue of Hurwitz's theorem on automorphisms. They are also referred to as Hurwitz curves, interpreting them as complex algebraic curves.

In topological graph theory, the Wilson operations are a group of six transformations on graph embeddings. They are generated by two involutions on embeddings, surface duality and Petrie duality, and have the group structure of the symmetric group on three elements. They are named for Stephen E. Wilson, who published them for regular maps in 1979; they were extended to all cellular graph embeddings by Lins (1982).

References

  1. le Bruyn, Lieven (2008), Klein's dessins d'enfant and the buckyball .

Further reading