Blepharisma nuclear code

Last updated

The Blepharisma nuclear code (translation table 15) is a genetic code found in the nuclei of Blepharisma . [1]

Contents

Code

    AAs = FFLLSSSSYY*QCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts = -----------------------------------M----------------------------
  Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
 Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
 Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

Bases: adenine (A), cytosine (C), guanine (G) and thymine (T) or uracil (U).

Amino acids: Alanine (Ala, A), Arginine (Arg, R), Asparagine (Asn, N), Aspartic acid (Asp, D), Cysteine (Cys, C), Glutamic acid (Glu, E), Glutamine (Gln, Q), Glycine (Gly, G), Histidine (His, H), Isoleucine (Ile, I), Leucine (Leu, L), Lysine (Lys, K), Methionine (Met, M), Phenylalanine (Phe, F), Proline (Pro, P), Serine (Ser, S), Threonine (Thr, T), Tryptophan (Trp, W), Tyrosine (Tyr, Y), Valine (Val, V)

Differences from the standard code

DNA codonsRNA codonsThis code (15) Standard code (1)
TAGUAGGln(Q)STOP = Ter(*)

Systematic range and comments

Ciliata: Blepharisma [2]

See also

Related Research Articles

The pterobranchia mitochondrial code is a genetic code used by the mitochondrial genome of Rhabdopleura compacta (Pterobranchia). The Pterobranchia are one of the two groups in the Hemichordata which together with the Echinodermata and Chordata form the three major lineages of deuterostomes. AUA translates to isoleucine in Rhabdopleura as it does in the Echinodermata and Enteropneusta while AUA encodes methionine in the Chordata. The assignment of AGG to lysine is not found elsewhere in deuterostome mitochondria but it occurs in some taxa of Arthropoda. This code shares with many other mitochondrial codes the reassignment of the UGA STOP to tryptophan, and AGG and AGA to an amino acid other than arginine. The initiation codons in Rhabdopleura compacta are ATG and GTG.

The yeast mitochondrial code is a genetic code used by the mitochondrial genome of yeasts, notably Saccharomyces cerevisiae, Candida glabrata, Hansenula saturnus, and Kluyveromyces thermotolerans.

The ciliate, dasycladacean and Hexamita nuclear code is a genetic code used by certain ciliate, dasycladacean and Hexamita species.

The echinoderm and flatworm mitochondrial code is a genetic code used by the mitochondria of certain echinoderm and flatworm species.

The euplotid nuclear code is the genetic code used by Euplotidae. The euplotid code is a socalled "symmetrical code", which results from the symmetrical distribution of the codons. This symmetry allows for arythmic exploration of the codon distribution. In 2013, shCherbak and Makukov, reported that "the patterns are shown to match the criteria of an intelligent signal."

The alternative yeast nuclear code is a genetic code found in certain yeasts. However, other yeast, including Saccharomyces cerevisiae, Candida azyma, Candida diversa, Candida magnoliae, Candida rugopelliculosa, Yarrowia lipolytica, and Zygoascus hellenicus, definitely use the standard (nuclear) code.

The candidate division SR1 and gracilibacteria code is used in two groups of uncultivated bacteria found in marine and fresh-water environments and in the intestines and oral cavities of mammals among others. The difference to the standard and the bacterial code is that UGA represents an additional glycine codon and does not code for termination. A survey of many genomes with the codon assignment software Codetta, analyzed through the GTDB taxonomy system shows that this genetic code is limited to the Patescibacteria order BD1-5, not what are now termed Gracilibacteria, and that the SR1 genome assembly GCA_000350285.1 for which the table 25 code was originally defined is actually using the Absconditibacterales genetic code and has the associated three special recoding tRNAs. Thus this code may now be better named the "BD1-5 code".

The ascidian mitochondrial code is a genetic code found in the mitochondria of Ascidia.

The alternative flatworm mitochondrial code is a genetic code found in the mitochondria of Platyhelminthes and Nematodes.

The chlorophycean mitochondrial code is a genetic code found in the mitochondria of Chlorophyceae.

The trematode mitochondrial code is a genetic code found in the mitochondria of Trematoda.

The Scenedesmus obliquusmitochondrial code is a genetic code found in the mitochondria of Scenedesmus obliquus, a species of green algae.

The Thraustochytrium mitochondrial code is a genetic code found in the mitochondria of the labyrinthulid protist Thraustochytrium aureum. The mitochondrial genome was sequenced by the Organelle Genome Megasequencing Program.

The pachysolen tannophilus nuclear code is a genetic code found in the ascomycete fungus Pachysolen tannophilus.

The karyorelictid nuclear code is a genetic code used by the nuclear genome of the Karyorelictea ciliate Parduczia sp. This code, along with translation tables 28 and 31, is remarkable in that every one of the 64 possible codons can be a sense codon. Translation termination probably relies on context, specifically proximity to the poly(A) tail.

The Condylostoma nuclear code is a genetic code used by the nuclear genome of the heterotrich ciliate Condylostoma magnum. This code, along with translation tables 27 and 31, is remarkable in that every one of the 64 possible codons can be a sense codon. Experimental evidence suggests that translation termination relies on context, specifically proximity to the poly(A) tail. Near such a tail, PABP could help terminate the protein by recruiting eRF1 and eRF3 to prevent the cognate tRNA from binding.

The Mesodinium nuclear code is a genetic code used by the nuclear genome of the ciliates Mesodinium and Myrionecta.

The peritrich nuclear code is a genetic code used by the nuclear genome of the peritrich ciliates Vorticella and Opisthonecta.

The Blastocrithidia nuclear code is a genetic code used by the nuclear genome of the trypanosomatid genus Blastocrithidia. This code, along with translation tables 27 and 28, is remarkable in that every one of the 64 possible codons can be a sense codon.

The Cephalodiscidae mitochondrial code is a genetic code used by the mitochondrial genome of Cephalodiscidae (Pterobranchia). The Pterobranchia are one of the two groups in the Hemichordata which together with the Echinodermata and Chordata form the major clades of deuterostomes.

References

This article incorporates text from the United States National Library of Medicine, which is in the public domain. [3]

  1. Andrzej Elzanowski; Jim Ostell (26 September 1996). "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 14 March 2016. Retrieved 20 January 2017.
  2. A Liang, K Heckman (1993). "Blepharisma uses UAA as a termination codon". Naturwissenschaften. 80 (5): 225–226. Bibcode:1993NW.....80..225L. doi:10.1007/bf01175738. PMID   7685500. S2CID   6219316.
  3. Elzanowski A, Ostell J, Leipe D, Soussov V. "The Genetic Codes". Taxonomy browser. National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine. Retrieved 3 July 2016.