Block and tackle

Last updated
Block-and-tackle-in-use.svg

A block and tackle [1] [2] or only tackle [3] is a system of two or more pulleys with a rope or cable threaded between them, usually used to lift heavy loads.

Contents

The pulleys are assembled to form blocks and then blocks are paired so that one is fixed and one moves with the load. The rope is threaded through the pulleys to provide mechanical advantage that amplifies the force applied to the rope. [4]

Hero of Alexandria described cranes formed from assemblies of pulleys in the first century. Illustrated versions of Hero's Mechanica (a book on raising heavy weights) show early block and tackle systems. [5]

Overview

Various ways of rigging a tackle. All these are "rove to disadvantage" (see below). Tackles.png
Various ways of rigging a tackle. All these are "rove to disadvantage" (see below).

A block is a set of pulleys or sheaves mounted on a single frame. An assembly of blocks with a rope threaded through the pulleys is called tackle. The process of threading ropes or cables through blocks is called "reeving", and a threaded block and tackle is said to have been "rove". [7] A block and tackle system amplifies the tension force in the rope to lift heavy loads. They are common on boats and sailing ships, where tasks are often performed manually, as well as on cranes and drilling rigs, where once rove, the tasks are performed by heavy equipment.

In the diagram shown here, the number of rope sections of the tackles shown is as follows:

Note that in the gun tackle, double tackle and threefold purchase, both blocks have the same number of pulleys (one, two and three, respectively) whereas the Luff tackle and Gyn tackle have mis-matched blocks with differing numbers of pulleys.

Mechanical advantage

A gun tackle has a single pulley in both the fixed and moving blocks with 2 rope parts (n) supporting the load (FB) of 100 N. The mechanical advantage is 2, requiring a force of only 50 N to lift the load. Polispasto2B.jpg
A gun tackle has a single pulley in both the fixed and moving blocks with 2 rope parts (n) supporting the load (FB) of 100 N. The mechanical advantage is 2, requiring a force of only 50 N to lift the load.

A block and tackle is characterized by the use of a single continuous rope to transmit a tension force around one or more pulleys to lift or move a load. Its mechanical advantage is the number of parts of the rope that act on the load. The mechanical advantage of a tackle dictates how much easier it is to haul or lift the load.

If frictional losses are neglected, the mechanical advantage of a block and tackle is equal to the number of parts in the line that either attach to or run through the moving blocks—in other words, the number of supporting rope sections.

An ideal block and tackle with a moving block supported by n rope sections has the mechanical advantage (MA), where FA is the hauling (or input) force and FB is the load.

Consider the set of pulleys that form the moving block and the parts of the rope that support this block. If there are n of these parts of the rope supporting the load FB, then a force balance on the moving block shows that the tension in each of the parts of the rope must be FB/n. This means the input force on the rope is FA=FB/n. Thus, the block and tackle reduces the input force by the factor n.

A double tackle has two pulleys in both the fixed and moving blocks with four rope parts (n) supporting the load (FB) of 100 N. The mechanical advantage is 4, requiring a force of only 25 N to lift the load. Polispasto4.jpg
A double tackle has two pulleys in both the fixed and moving blocks with four rope parts (n) supporting the load (FB) of 100 N. The mechanical advantage is 4, requiring a force of only 25 N to lift the load.

Ideal mechanical advantage correlates directly with velocity ratio. The velocity ratio of a tackle is the ratio between the velocity of the hauling line to that of the hauled load. A line with a mechanical advantage of 4 has a velocity ratio of 4:1. In other words, to raise a load at 1 metre per second, the hauling part of the rope must be pulled at 4 metres per second. Therefore, the mechanical advantage of a double tackle is 4.

Rove to (dis)advantage

The mechanical advantage of any tackle can be increased by interchanging the fixed and moving blocks so the rope is attached to the moving block and the rope is pulled in the direction of the lifted load. In this case the block and tackle is said to be "rove to advantage." [8]

Diagram 3 shows three rope parts supporting the load W, which means the tension in the rope is W/3. Thus, the mechanical advantage is three-to-one.

By adding a pulley to the fixed block of a gun tackle the direction of the pulling force is reversed though the mechanical advantage remains the same, Diagram 3a. This is an example of the Luff tackle.

The decision of which to use depends on pragmatic considerations for the total ergonomics of working with a particular situation. Reeving to advantage is the most efficient use of equipment and resources. For example, if the load is to be hauled parallel to the ground, reeving to advantage enables the pulling force to be in the direction of the load movement, allowing obstacles to be managed more easily.

Reeving to disadvantage adds an extra sheave to change the direction of the pulling line to a potentially more ergonomic direction, which increases friction losses without improving the velocity ratio. Situations in which reeving to disadvantage may be more desirable include lifting from a fixed point overhead--the additional pulley allows pulling downwards instead of upwards so that the weight of the lifter can offset the weight of the load, or allows pulling sideways, enabling multiple lifters to combine effort.

Friction

Wooden block on a sailing ship. PulleyShip.JPG
Wooden block on a sailing ship.

The formula used to find the effort required to raise a given weight using a block and fall:

where is the force applied to the hauling part of the line (the input force), is the weight of the load (the output force), is the ideal mechanical advantage of the system (which is the same as the number of segments of line extending from the moving block), and is the mechanical efficiency of the system (equal to one for an ideal frictionless system; a fraction less than one for real-world systems with energy losses due to friction and other causes). If is the number of sheaves in the purchase, and there is a roughly % loss of efficiency at each sheave due to friction, then: [9] [10]

This approximation is more accurate for smaller values of and . [10] A more precise estimate of efficiency is possible by use of the sheave friction factor, (which may be obtainable from the manufacturer or published tables [11] ). The relevant equation is: [11]

Typical values are 1.04 for roller bearing sheaves and 1.09 for plain bearing sheaves (with wire rope). [11]

The increased force produced by a tackle is offset by both the increased length of rope needed and the friction in the system. In order to raise a block and tackle with a mechanical advantage of 6 a distance of 1 metre, it is necessary to pull 6 metres of rope through the blocks. Frictional losses also mean there is a practical point at which the benefit of adding a further sheave is offset by the incremental increase in friction which would require additional force to be applied in order to lift the load. Too much friction may result in the tackle not allowing the load to be released easily, [notes 1] or by the reduction in force needed to move the load being judged insufficient because undue friction has to be overcome as well.

Mid-line attachment

When installing a block on an existing line, it is often inconvenient at best to thread the rope through the block to be added.

Three snatch blocks showing the 'snatch' in the closed, opened, and securely moused Three snatch blocks.jpg
Three snatch blocks showing the ‘snatch’ in the closed, opened, and securely moused

[ citation needed ]

Swing cheek blocks may be roughly divided into two categories:

Examples of use (in an arboricultural setting) include: tail minding/tending, and for setting a rigging point in the tree above the cut to take place—a positive rigging situation.
Examples of use (again, in relation to tree care) may include setting a block below the current cut, resulting in a 'negative' rigging situation, in which shock loads can be significant—especially if removing large sections of vertical stem.

Literature

See also

Notes

  1. Friction may mean that the rope in a tackle "bunches" and jams when the force is released if the tackle has too much friction for the load to balance, or that the tackle does not "lower" the load

Related Research Articles

Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical device or machine system. The device trades off input forces against movement to obtain a desired amplification in the output force. The model for this is the law of the lever. Machine components designed to manage forces and movement in this way are called mechanisms. An ideal mechanism transmits power without adding to or subtracting from it. This means the ideal machine does not include a power source, is frictionless, and is constructed from rigid bodies that do not deflect or wear. The performance of a real system relative to this ideal is expressed in terms of efficiency factors that take into account departures from the ideal.

<span class="mw-page-title-main">Pulley</span> Wheel to support movement and change of direction of a taut cable

A pulley is a wheel on an axle or shaft enabling a taut cable or belt passing over the wheel to move and change direction, or transfer power between itself and a shaft. A sheave or pulley wheel is a pulley using an axle supported by a frame or shell (block) to guide a cable or exert force.

<span class="mw-page-title-main">Simple machine</span> Mechanical device that changes the direction or magnitude of a force

A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage to multiply force. Usually the term refers to the six classical simple machines that were defined by Renaissance scientists:

<span class="mw-page-title-main">Inclined plane</span> Tilted flat supporting surface

An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle from the vertical direction, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six classical simple machines defined by Renaissance scientists. Inclined planes are used to move heavy loads over vertical obstacles. Examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade.

<span class="mw-page-title-main">Block (sailing)</span> Sailing term; single or multiple pulley

In sailing, a block is a single or multiple pulley. One or a number of sheaves are enclosed in an assembly between cheeks or chocks. In use, a block is fixed to the end of a line, to a spar, or to a surface. A line (rope) is reeved through the sheaves, and maybe through one or more matching blocks at some far end, to make up a tackle.

<span class="mw-page-title-main">Derrick</span> Lifting device

A derrick is a lifting device composed at minimum of one guyed mast, as in a gin pole, which may be articulated over a load by adjusting its guys. Most derricks have at least two components, either a guyed mast or self-supporting tower, and a boom hinged at its base to provide articulation, as in a stiffleg derrick. The most basic type of derrick is controlled by three or four lines connected to the top of the mast, which allow it to both move laterally and cant up and down. To lift a load, a separate line runs up and over the mast with a hook on its free end, as with a crane.

<span class="mw-page-title-main">Belt (mechanical)</span> Method of connecting two rotating shafts or pulleys

A belt is a loop of flexible material used to link two or more rotating shafts mechanically, most often parallel. Belts may be used as a source of motion, to transmit power efficiently or to track relative movement. Belts are looped over pulleys and may have a twist between the pulleys, and the shafts need not be parallel.

<span class="mw-page-title-main">Prusik</span> Type of knot

A Prusik is a friction hitch or knot used to attach a loop of cord around a rope, applied in climbing, canyoneering, mountaineering, caving, rope rescue, ziplining, and by arborists. The term Prusik is a name for both the loops of cord used to tie the hitch and the hitch itself, and the verb is "to prusik" or "prusiking". More casually, the term is used for any friction hitch or device that can grab a rope. Due to the pronunciation, the word is often misspelled Prussik, Prussick, or Prussic.

<span class="mw-page-title-main">Fly system</span> Rigging above a theater stage

A fly system, or theatrical rigging system, is a system of ropes, pulleys, counterweights and related devices within a theater that enables a stage crew to fly (hoist) quickly, quietly and safely components such as curtains, lights, scenery, stage effects and, sometimes, people. Systems are typically designed to fly components between clear view of the audience and out of view, into the large space, the fly loft, above the stage.

<span class="mw-page-title-main">Leadscrew</span> Screw used as a linkage in a mechanism

A leadscrew, also known as a power screw or translation screw, is a screw used as a linkage in a machine, to translate turning motion into linear motion. Because of the large area of sliding contact between their male and female members, screw threads have larger frictional energy losses compared to other linkages. They are not typically used to carry high power, but more for intermittent use in low power actuator and positioner mechanisms. Leadscrews are commonly used in linear actuators, machine slides, vises, presses, and jacks. Leadscrews are a common component in electric linear actuators.

<span class="mw-page-title-main">Tension (physics)</span> Pulling force transmitted axially – opposite of compression

Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.

<span class="mw-page-title-main">Rigger (industry)</span> Worker in lifting, landing and assembly of large or heavy objects

A rigger or slinger is a skilled tradesperson who specializes in the assistance of manual mechanical advantage device comprising pulley, block and tackle or motorised such as a crane or derrick or chain hoists or capstan winch.

<span class="mw-page-title-main">Traveling block</span>

A traveling block is the freely moving section of a block and tackle that contains a set of pulleys or sheaves through which the drill line is threaded or reeved and is opposite the crown block.

<span class="mw-page-title-main">Z-drag</span> Method of increasing the pull on a rope

A Z-Drag or Z-Rig is an arrangement of lines and pulleys, effectively forming a block and tackle, that is commonly used in rescue situations. The basic arrangement results in pulling the hauling end 3 times the distance the load is moved, providing a theoretical mechanical advantage of three to one. In actual practice the advantage will be reduced by friction in the pulleys or carabiners. The advantage will also be reduced if the pull on the hauling end is not parallel to the direction the load moves in. The name comes from the fact that the arrangement of lines is roughly Z-shaped. Besides the mechanical advantage to pulling, it also uses only part of the total length of the rope for the block and tackle arrangement.

<span class="mw-page-title-main">Differential pulley</span> Self-balancing mechanical lifting hoist

A differential pulley —also called "Weston differential pulley", sometimes "differential hoist", "chain hoist", or colloquially "chain fall"— is used to manually lift very heavy objects like car engines. It is operated by pulling upon the slack section of a continuous chain that wraps around two pulleys on a common shaft. The relative sizing of the two connected pulleys determines the maximum weight that can be lifted by hand. If the pulley radii are close enough, then the load will remain in place until the chain is pulled.

<span class="mw-page-title-main">Capstan equation</span> Formula relating load-force and hold-force on a line wound around a cylinder

The capstan equation or belt friction equation, also known as Euler–Eytelwein formula, relates the hold-force to the load-force if a flexible line is wound around a cylinder.

A drawworks is the primary hoisting machinery component of a rotary drilling rig. Its main function is to provide a means of raising and lowering the traveling block. The wire-rope drill line winds on the drawworks drum and over the crown block to the traveling block, allowing the drill string to be moved up and down as the drum turns. The segment of drill line from the drawworks to the crown block is called the "fast line". The drill line then enters the first sheave of the crown block and makes typically 6 to 12 passes between the crown block and traveling block pulleys for mechanical advantage. The line then exits the last sheave on the crown block and is fastened to a derrick leg on the other side of the rig floor. This section of drill line is called the "dead line."

Belt friction is a term describing the friction forces between a belt and a surface, such as a belt wrapped around a bollard. When a force applies a tension to one end of a belt or rope wrapped around a curved surface, the frictional force between the two surfaces increases with the amount of wrap about the curved surface, and only part of that force is transmitted to the other end of the belt or rope. Belt friction can be modeled by the Belt friction equation.

<span class="mw-page-title-main">Mechanical advantage device</span>

A simple machine that exhibits mechanical advantage is called a mechanical advantage device - e.g.:

<span class="mw-page-title-main">Rigging (material handling)</span> Equipment and procedure in material handling

Rigging is both a noun, the equipment, and verb, the action of designing and installing the equipment, in the preparation to move objects. A team of riggers design and install the lifting or rolling equipment needed to raise, roll, slide or lift objects such as heavy machinery, structural components, building materials, or large-scale fixtures with a crane, hoist or block and tackle.

References

  1. "Tackle" can be /ˈtkəl/ in this usage.
  2. [ dead link ] "Royal Canadian Sea Cadets - Master Lesson Plan - Level T\\\2" (PDF). Archived from the original (PDF) on 2013-03-09. Retrieved 2009-12-27.
  3. Manual of military engineering
  4. Ned Pelger, ConstructionKnowledge.net
  5. A. P. Usher, A History of Mechanical Inventions, Harvard University Press, 1929 (Dover Publications, revised edition, 2011, ISBN   978-0486255934)
  6. 1 2 3 MacDonald, Joseph A (14 January 2009). Handbook of Rigging: For Construction and Industrial Operations. McGraw-Hill Professional. p. 376. ISBN   978-0-07-149301-7. Tackle may be rigged to advantage - where the pull on the rope is in the same direction as that in which the load is to be moved; or it may be rigged to disadvantage - where the pull on the rope is in the opposite direction of that in which the load is to be moved
  7. wiktionary:reeve
  8. sccheadquarters.com seamanship reference Archived November 11, 2011, at the Wayback Machine
  9. Notes on cargo work: Kemp and Young. 3rd Edition. ISBN   0-85309-040-8 Page 4
  10. 1 2 Glerum, Jay O. (2007-04-03). Stage rigging handbook (3rd ed.). Southern Illinois University Press. pp. 52–54 (320 pages total). ISBN   978-0-8093-2741-6.
  11. 1 2 3 Recommended Practice on Application Care, and use of Wire Rope for Oil Field Service, Twelfth Edition. American Petroleum Institute. 2005-06-01. p. 33.
  12. Mathews, Lisa (2016-02-02). "What is a Snatch Block?". US Cargo Control Blog. Archived from the original on 2019-12-19. Retrieved 2019-12-19.