Borrelidin

Last updated
Borrelidin
Borrelidin.svg
Identifiers
  • (1R,2R)-2-[(2S,4E,6Z,8R,9S,11R,13S,15S,16S)-7-Cyano-8,16-dihydroxy-9,11,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6-dien-2-yl]cyclopentane-1-carboxylic acid
CAS Number
PubChem CID
UNII
ECHA InfoCard 100.242.694 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C28H43NO6
Molar mass 489.653 g·mol−1
3D model (JSmol)
  • C[C@H]1C[C@H](C[C@@H]([C@H](/C(=C\C=C\C[C@H](OC(=O)C[C@@H]([C@H](C1)C)O)[C@@H]2CCC[C@H]2C(=O)O)/C#N)O)C)C
  • InChI=InChI=1S/C28H43NO6/c1-17-12-18(2)14-20(4)27(32)21(16-29)8-5-6-11-25(22-9-7-10-23(22)28(33)34)35-26(31)15-24(30)19(3)13-17/h5-6,8,17-20,22-25,27,30,32H,7,9-15H2,1-4H3,(H,33,34)/b6-5+,21-8-/t17-,18+,19-,20-,22+,23+,24-,25-,27+/m0/s1

Borrelidin is an 18-membered polyketide macrolide derived from several Streptomyces species. First discovered in 1949 from Streptomyces rochei, [1] Borrelidin shows antibacterial activity by acting as an inhibitor of threonyl-tRNA synthetase and features a nitrile moiety, a unique functionality in natural products. [2] , [3] Borrelidin also exhibits potent angiogenesis inhibition, which was shown in a rat aorta matrix model. [4] Other studies have been performed to show that low concentrations of borrelidin can suppress growth and induce apoptosis in malignant acute lymphoblastic leukemia cells. [5] Borredlidin's antimalarial activity has also been shown in vitro and in vivo . [6]

Biosynthesis

The core structure of borrelidin is biosynthesized by type I polyketide synthase (PKS), followed by post-PKS modifications. Six genes (borA1 to borA6) encode the type I PKS, composed of a loading domain and six extending modules, rather than the expected eight. [7] Each extension module consists of the ketosynthase (KS) condensing an extender unit, either malonyl-CoA or methylmalonyl-CoA, that is loaded by the acyl transferase (AT) onto the growing polyketide, which can then be modified by further enzymes. Tailoring enzymes of type I PKS that can be involved in each module are ketoreductase (KR), dehydratase (DH), and enoyl reductase (ER). Once polyketide has gone through all of the chain extensions, it can then be released via cyclization by the thioesterase (TE).

The proposed biosynthetic pathway to borrelidin: AT, acyl transferase; ACP, acyl carrier protein; KS, ketosynthase; KR, ketoreductase; DH, dehydratase; ER, enoyl reductase; TE, thioesterase Borrelidin.gif
The proposed biosynthetic pathway to borrelidin: AT, acyl transferase; ACP, acyl carrier protein; KS, ketosynthase; KR, ketoreductase; DH, dehydratase; ER, enoyl reductase; TE, thioesterase

Starting with a cyclopentane carboxylic acid starter unit that is loaded onto the acyl carrier protein, ACP, in BorA1, the polyketide intermediate, tethered to ACP via a thioester linkage, undergoes a series of extension modules. [7] BorA2 has one extension module that loads malonyl-CoA and has a ketoreductase to reduce the β-carbonyl to a hydroxyl group. [7] Next, BorA3, consisting of modules 2 and 3, which load malonyl-CoA and methylmalonyl-CoA, respectively, have both ketoreductase and dehydratase enzymes. [7] BorA4 only has one extension module, loading methylmalonyl-CoA and having a ketoreductase as a tailoring enzyme. [7] The next three chain extensions are catalyzed by BorA5, which is done through three iterative rounds of elongation and condensations with methylmalonyl-CoA from where the polyketide intermediates undergo modifications by KR, DH, and ER. [7] , [8] Lastly, BorA6 loads malonyl-CoA, modifies the polyketide intermediate via a ketoreductase enzyme, and terminates the PKS cycle by a thioesterase, which releases the polyketide to form pre-Borrelidin. [7]

The formation of the nitrile moiety of borrelidin is done by post-PKS modifications from gene products of BorI, BorJ, and BorK. [9] The BorI gene product, a cytochrome 450 hydroxylase catalyzes the oxidation of the C12 methyl group into an allylic alcohol, which can undergo further oxidation by the gene products of BorI or BorK, an oxidoreductase, to form the formyl intermediate. [9] The BorJ gene product, a PMP-dependent transaminase, then introduces an amine into the polyketide, generating intermediate Borrelidin B. [7] BorI then catalyzes the conversion of the amine to an N,N-dihydroxy species and the dehydration to form borrelidin via an aldoxime intermediate. [9]

Related Research Articles

<span class="mw-page-title-main">Mupirocin</span> Chemical compound

Mupirocin, sold under the brand name Bactroban among others, is a topical antibiotic useful against superficial skin infections such as impetigo or folliculitis. It may also be used to get rid of methicillin-resistant S. aureus (MRSA) when present in the nose without symptoms. Due to concerns of developing resistance, use for greater than ten days is not recommended. It is used as a cream or ointment applied to the skin.

In organic chemistry, polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups: [−C(=O)−CH2−]n. First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

<span class="mw-page-title-main">Mycolactone</span> Chemical compound

Mycolactone is a polyketide-derived macrolide produced and secreted by a group of very closely related pathogenic mycobacteria species including M. ulcerans, M. liflandii, M. pseudoshottsii, and some strains of M. marinum. These mycobacteria are collectively referred to as mycolactone-producing mycobacteria or MPM.

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.

<span class="mw-page-title-main">Biosynthesis of doxorubicin</span>

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of streptomyces. In contrast, only one known non-wild type species, streptomyces peucetius subspecies caesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of streptomyces can produce doxorubicin. His group has also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR. By 1999, they produced recombinant Dox A, a Cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing Dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed Dox A, were able to double the yield of DXR. This is of more than academic interest because at that time DXR cost about $1.37 million per kg and current production in 1999 was 225 kg per annum. More efficient production techniques have brought the price down to $1.1 million per kg for the non-liposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

In enzymology, an erythronolide synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Anthracimycin</span> Polyketide

Anthracimycin is a polyketide antibiotic discovered in 2013. Anthracimycin is derived from marine actinobacteria. In preliminary laboratory research, it has shown activity against Bacillus anthracis, the bacteria that causes anthrax, and against methicillin-resistant Staphylococcus aureus (MRSA).

<span class="mw-page-title-main">Leinamycin</span> Chemical compound

Leinamycin is an 18-membered macrolactam produced by several species of Streptomyces atroolivaceus. This macrolactam has also been shown to exhibit antitumor properties as well as antimicrobial properties against gram-positive and gram-negative bacteria. The presence of a spiro-fused 1,3-dioxo-1,2-dithiolane moiety was a unique structural property at the time of this compound's discovery and it plays an important role in leinamycin's antitumor and antibacterial properties due to its ability to inhibit DNA synthesis.

<span class="mw-page-title-main">Atrop-abyssomicin C</span> Chemical compound

Atrop-abyssomicin C is a polycyclic polyketide-type natural product that is the atropisomer of abyssomicin C. It is a spirotetronate that belongs to the class of tetronate antibiotics, which includes compounds such as tetronomycin, agglomerin, and chlorothricin. In 2006, the Nicolaou group discovered atrop-abyssomicin C while working on the total synthesis of abyssomicin C. Then in 2007, Süssmuth and co-workers isolated atrop-abyssomicin C from Verrucosispora maris AB-18-032, a marine actinomycete found in sediment of the Japanese sea. They found that atrop-abyssomicin C was the major metabolite produced by this strain, while abyssomicin C was a minor product. The molecule displays antibacterial activity by inhibiting the enzyme PabB, thereby depleting the biosynthesis of p-aminobenzoate.

<span class="mw-page-title-main">C-1027</span> Chemical compound

C-1027 or lidamycin is an antitumor antibiotic consisting of a complex of an enediyne chromophore and an apoprotein. It shows antibiotic activity against most Gram-positive bacteria. It is one of the most potent cytotoxic molecules known, due to its induction of a higher ratio of DNA double-strand breaks than single-strand breaks.

Fostriecin is a type I polyketide synthase (PKS) derived natural product, originally isolated from the soil bacterium Streptomyces pulveraceus. It belongs to a class of natural products which characteristically contain a phosphate ester, an α,β-unsaturated lactam and a conjugated linear diene or triene chain produced by Streptomyces. This class includes structurally related compounds cytostatin and phoslactomycin. Fostriecin is a known potent and selective inhibitor of protein serine/threonine phosphatases, as well as DNA topoisomerase II. Due to its activity against protein phosphatases PP2A and PP4 which play a vital role in cell growth, cell division, and signal transduction, fostriecin was looked into for its antitumor activity in vivo and showed in vitro activity against leukemia, lung cancer, breast cancer, and ovarian cancer. This activity is thought to be due to PP2A's assumed role in regulating apoptosis of cells by activating cytotoxic T-lymphocytes and natural killer cells involved in tumor surveillance, along with human immunodeficiency virus-1 (HIV-1) transcription and replication.

<span class="mw-page-title-main">Annimycin</span> Polyenoic acid amide natural product produced by Streptomyces calvus

Annimycin (4-(Z)-annimycin) is a polyenoic acid amide natural product produced by Streptomyces calvus. Annimycin inhibits the sporulation of several actinobacterial genera.

Tylactone synthase or TYLS is a Type 1 polyketide synthase. TYLS is found in strains of Streptomyces fradiae and responsible for the synthesis of the macrolide ring, tylactone, the precursor of an antibiotic, tylosin. TYLS is composed of five large multi-functional proteins, TylGI-V. Each protein contains either one or two modules. Each module consists of a minimum of a Ketosynthase (KS), an Acyltransferase (AT), and an Acyl carrier protein (ACP) but may also contain a Ketoreductase (KR), Dehydrotase (DH), and Enoyl Reductase (ER) for additional reduction reactions. The domains of TYLS have similar activity domains to those found in other Type I polyketide synthase such as 6-Deoxyerythronolide B synthase (DEBS). The TYLS system also contains a loading module consisting of a ketosynthase‐like decarboxylase domain, an acyltransferase, and acyl carrier protein. The terminal Thioesterase terminates tylactone synthesis by cyclizing the macrolide ring. After the TYLS completes tylactone synthesis, the tylactone molecule is modified by oxidation at C-20 and C-23 and glycosylation of mycaminose, mycinose, and mycarose to produce tylosin.

<span class="mw-page-title-main">Phoslactomycin B</span> Chemical compound

Phoslactomycin (PLM) is a natural product from the isolation of Streptomyces species. This is an inhibitor of the protein serine/threonine phosphatase which is the protein phosphate 2A (PP2A). The PP2A involves the growth factor of the cell such as to induce the formation of mitogen-activated protein interaction and playing a role in cell division and signal transduction. Therefore, PLM is used for the drug that prevents the tumor, cancer, or bacteria. There are nowsaday has 7 kinds of different PLM from PLM A to PLM G which differ the post-synthesis from the biosynthesis of PLM.

Tautomycetin is a natural product first isolated from Streptomyces griseochromogenes, a bacterium found in the soil of the Zhejiang Province, China. It was also later found in Penicillium urticae. It is a linear polyketide very similar in structure to tautomycin, both of which contain a unique dialkylmaleic anhydride moiety, which is essential for their pharmacological activity. Tautomycetin is a selective inhibitor of protein phosphatase 1.

<span class="mw-page-title-main">Prescopranone</span> Chemical compound

Prescopranone is a key intermediate in the biosynthesis of scopranones. Prescopranone is the precursor to scopranone A, scopranone B, and scopranone C, which are produced by Streptomyces sp. BYK-11038.

Andrimid is an antibiotic natural product that is produced by the marine bacterium Vibrio coralliilyticus. Andrimid is an inhibitor of fatty acid biosynthesis by blocking the carboxyl transfer reaction of acetyl-CoA carboxylase (ACC).

<span class="mw-page-title-main">Pladienolide B</span> Chemical compound

Pladienolide B is a natural product produced by bacterial strain, Streptomyces platensis MER-11107, which is a gram-positive bacteria isolated from soil in Japan. Pladienolide B is a molecule of interest due to its potential anti-cancer properties. Its anti-cancer mode of action includes binding to the SF3B complex in the U2 snRNP in the human spliceosome.

<span class="mw-page-title-main">Peucemycin</span> Chemical compound

Peucemycin is a polyketide produced by Streptomyces peucetius, a Gram-positive filamentous bacteria that also produces the anticancer compounds daunorubicin and doxorubicin. This compound was elucidated from a cryptic biosynthetic gene cluster and is produced under temperature-specific conditions for bacterial growth. Peucemycin has demonstrated bioactivity against growth of S. aureus, P. hauseri, and S. enterica and also is weakly active against cancer cell lines. Peucemycin is biosynthesized through a Type 1 PKS system.

References

  1. Berger J, Jampolsky LM, Goldberg MW (July 1949). "Borrelidin, a new antibiotic with antiborrelia activity and penicillin enhancement properties". Archives of Biochemistry. 22 (3): 476–8. PMID   18134558.
  2. Hütter R, Poralla K, Zachau HG, Zähner H (March 1966). "[Metabolic products of microorganisms. 5l. On the mechanism of action of borrelidin-inhibition of the threonine incorporation in sRNA]". Biochemische Zeitschrift. 344 (2): 190–6. PMID   4860826.
  3. Paetz W, Nass G (June 1973). "Biochemical and immunological characterization of threonyl-tRNA synthetase of two borrelidin-resistant mutants of Escherichia coli K12". European Journal of Biochemistry. 35 (2): 331–7. doi: 10.1111/j.1432-1033.1973.tb02843.x . PMID   4577856.
  4. Wakabayashi T, Kageyama R, Naruse N, Tsukahara N, Funahashi Y, Kitoh K, Watanabe Y (August 1997). "Borrelidin is an angiogenesis inhibitor; disruption of angiogenic capillary vessels in a rat aorta matrix culture model". The Journal of Antibiotics. 50 (8): 671–6. doi: 10.7164/antibiotics.50.671 . PMID   9315080.
  5. Habibi D, Ogloff N, Jalili RB, Yost A, Weng AP, Ghahary A, Ong CJ (August 2012). "Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia". Investigational New Drugs. 30 (4): 1361–70. doi:10.1007/s10637-011-9700-y. PMID   21678129. S2CID   25124274.
  6. Azcárate IG, Marín-García P, Camacho N, Pérez-Benavente S, Puyet A, Diez A, Ribas de Pouplana L, Bautista JM (June 2013). "Insights into the preclinical treatment of blood-stage malaria by the antibiotic borrelidin". British Journal of Pharmacology. 169 (3): 645–58. doi:10.1111/bph.12156. PMC   3682711 . PMID   23488671.
  7. 1 2 3 4 5 6 7 8 Olano C, Wilkinson B, Sánchez C, Moss SJ, Sheridan R, Math V, Weston AJ, Braña AF, Martin CJ, Oliynyk M, Méndez C, Leadlay PF, Salas JA (January 2004). "Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions". Chemistry & Biology. 11 (1): 87–97. doi: 10.1016/j.chembiol.2003.12.018 . PMID   15112998.
  8. Moss SJ, Martin CJ, Wilkinson B (October 2004). "Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity". Natural Product Reports. 21 (5): 575–93. doi:10.1039/b315020h. PMID   15459756.
  9. 1 2 3 Olano C, Moss SJ, Braña AF, Sheridan RM, Math V, Weston AJ, Méndez C, Leadlay PF, Wilkinson B, Salas JA (June 2004). "Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation". Molecular Microbiology. 52 (6): 1745–56. doi:10.1111/j.1365-2958.2004.04090.x. PMID   15186422. S2CID   44877478.