Botanical prospecting for uranium is a method of finding uranium deposits either by observation of plant life growing on the surface, or by geochemical analysis of plant material in a process known as Geobotanical prospecting. [1] [2]
The history of uranium prospecting, especially in the Colorado Plateau of North America, has seen several methods of identifying likely ore body locations. The use of radiation detectors, such as Geiger counters and scintillation counter is one such method. Another method widely used relies on knowledge of the geologic history of an area, such as locating a geologic formation known to host ore deposits.
During the early efforts to locate uranium deposits in the United States, the U.S. Geological Survey conducted studies of prospecting through botanical surveys. These studies examined three methods.
Each method begins with the identification of an area of interest. This area is then gridded off, which allows the prospector to map samples to specific locations on the ground.
The first method, not widely used in the Colorado Plateau, looks for physiologic and morphologic changes in plants growing in or around ore bodies. A survey of plants in the gridded area is conducted. Comparison of normal growth habits and rates is done with known normal plants, and areas with high rates of change in either physiology or morphology indicate likely spots for further prospecting. This method is time consuming, and is not useful in all areas.
The second method uses a survey of deep-rooted plants in an area of interest. This works because the plant roots carry uranium to the surface, where it is concentrated in growing areas of the plant. Juniper or saltbrush are usually used, as they are known uranium concentrators. Samples of tree branch tips and leaves are taken from each area in the grid. These samples are then sent to a laboratory for analysis. Concentrations of more than 1 part in a million-(> 1 ppm) of uranium indicate likely areas to investigate further, through drilling or digging. This method provides information about likely ore bodies down to a depth of between 50 and 70 feet, and is generally good in areas where mineralized beds form broad flat benches, so that a grid pattern can be used.
The third method looks for concentrations of indicator plant species in an area of interest. Some uranium ore bodies contain higher concentrations of certain elements, such as selenium, than the surrounding host rock in which they are found. Certain plants that concentrate these elements act as indicator species for likely ore body locations. Mapping these plants provides information about areas in which further prospecting should be done. For example, in areas such as the Colorado Plateau, various species of Astragalus are selenium concentrators (A. pattersoni, A. preussi, A. thompsonae). Other indicator plants for sulfur and calcium, such as Eriogonum inflatum and Oenothera caespitosa help to identify likely areas also, especially in conjunction with the selenium indicators.
In areas outside the Colorado Plateau, such as in South Australia or Saskatchewan, Canada, other plants would naturally be used.
Ore is natural rock or sediment that contains one or more valuable minerals concentrated above background levels, typically containing metals, that can be mined, treated and sold at a profit. The grade of ore refers to the concentration of the desired material it contains. The value of the metals or minerals a rock contains must be weighed against the cost of extraction to determine whether it is of sufficiently high grade to be worth mining and is therefore considered an ore. A complex ore is one containing more than one valuable mineral.
Economic geology is concerned with earth materials that can be used for economic and industrial purposes. These materials include precious and base metals, nonmetallic minerals and construction-grade stone. Economic geology is a subdiscipline of the geosciences; according to Lindgren (1933) it is “the application of geology”. It may be called the scientific study of the Earth's sources of mineral raw materials and the practical application of the acquired knowledge.
Prospecting is the first stage of the geological analysis of a territory. It is the search for minerals, fossils, precious metals, or mineral specimens. It is also known as fossicking.
The Morrison Formation is a distinctive sequence of Upper Jurassic sedimentary rock found in the western United States which has been the most fertile source of dinosaur fossils in North America. It is composed of mudstone, sandstone, siltstone, and limestone and is light gray, greenish gray, or red. Most of the fossils occur in the green siltstone beds and lower sandstones, relics of the rivers and floodplains of the Jurassic period.
Gold prospecting is the act of searching for new gold deposits. Methods used vary with the type of deposit sought and the resources of the prospector. Although traditionally a commercial activity, in some developed countries placer gold prospecting has also become a popular outdoor recreation. Gold prospecting has been popular since antiquity. From the earliest textual and archaeological references, gold prospecting was a common thread for gaining wealth.
Exploration geophysics is an applied branch of geophysics and economic geology, which uses physical methods at the surface of the Earth, such as seismic, gravitational, magnetic, electrical and electromagnetic, to measure the physical properties of the subsurface, along with the anomalies in those properties. It is most often used to detect or infer the presence and position of economically useful geological deposits, such as ore minerals; fossil fuels and other hydrocarbons; geothermal reservoirs; and groundwater reservoirs. It can also be used to detect the presence of unexploded ordnance.
Uranium mining is the process of extraction of uranium ore from the ground. Over 50 thousand tons of uranium were produced in 2019. Kazakhstan, Canada, and Australia were the top three uranium producers, respectively, and together account for 68% of world production. Other countries producing more than 1,000 tons per year included Namibia, Niger, Russia, Uzbekistan, the United States, and China. Nearly all of the world's mined uranium is used to power nuclear power plants. Historically uranium was also used in applications such as uranium glass or ferrouranium but those applications have declined due to the radioactivity of uranium and are nowadays mostly supplied with a plentiful cheap supply of depleted uranium which is also used in uranium ammunition. In addition to being cheaper, depleted uranium is also less radioactive due to a lower content of short-lived 234
U and 235
U than natural uranium.
The Gawler Craton covers approximately 440,000 square kilometres of central South Australia. Its Precambrian crystalline basement crustal block was cratonised ca. 1550–1450 Ma. Prior to 1550 Ma the craton comprised a number of active Proterozoic orogenic belts extending back in time to at least 2450 Ma.
Geobotanical prospecting refers to prospecting based on indicator plants like metallophytes and the analysis of vegetation. The concept is speculative or even fringe science. Sitings of commercial mines are invariably guided by geological principles and confirmed by chemical assays.
Uranium mining in the United States produced 173,875 pounds (78.9 tonnes) of U3O8 in 2019, 88% lower than the 2018 production of 1,447,945 pounds (656.8 tonnes) of U3O8 and the lowest US annual production since 1948. The 2019 production represents 0.3% of the anticipated uranium fuel requirements of the US's nuclear power reactors for the year.
Uranium mining in Colorado, United States, goes back to 1872, when pitchblende ore was taken from gold mines near Central City, Colorado. The Colorado uranium industry has seen booms and busts, but continues to this day. Not counting byproduct uranium from phosphate, Colorado is considered to have the third largest uranium reserves of any US state, behind Wyoming and New Mexico.
Uranium mining in Wyoming was formerly a much larger industry than it is today. Wyoming once had many operating uranium mines, and still has the largest known uranium ore reserves of any state in the U.S. At the end of 2008, the state had estimated reserves dependent on price: 539 million pounds of uranium oxide at $50 per pound, and 1,227 million pounds at $100 per pound.
Andrew A. Snelling is a young-Earth creationist geologist who works for Answers in Genesis.
SAG/SDAG Wismut was a uranium mining company in East Germany during the time of the Cold War. It produced a total of 230,400 tonnes of uranium between 1947 and 1990 and made East Germany the fourth largest producer of uranium ore in the world at the time. It was the largest single producer of uranium ore in the entire sphere of control of the USSR. In 1991 after German reunification it was transformed into the Wismut GmbH company, owned by the Federal Republic of Germany, which is now responsible for the restoration and environmental cleanup of the former mining and milling areas. The head office of SDAG Wismut / Wismut GmbH is in Chemnitz-Siegmar.
The Kemi Mine is owned by Outokumpu Chrome Oy, a subsidiary of Outokumpu Oyj. It is located in Elijärvi, in the municipality of Keminmaa, to the north of Kemi. The Kemi Mine is the largest underground mine in Finland, with an annual production capacity of 2.7 million tonnes of ore. It is also part of the integrated ferrochrome and stainless steel manufacturing chain owned by Outokumpu in the Kemi-Tornio region. The Kemi Mine has approximately 400 employees every day, both employees of Outokumpu and contractors.
Brine mining is the extraction of useful materials which are naturally dissolved in brine. The brine may be seawater, other surface water, groundwater, or hyper-saline solutions from several industries. It differs from solution mining or in-situ leaching in that those methods inject water or chemicals to dissolve materials which are in a solid state; in brine mining, the materials are already dissolved.
A primary mineral is any mineral formed during the original crystallization of the host igneous primary rock and includes the essential mineral(s) used to classify the rock along with any accessory minerals. In ore deposit geology, hypogene processes occur deep below the Earth's surface, and tend to form deposits of primary minerals, as opposed to supergene processes that occur at or near the surface, and tend to form secondary minerals.
Helen Leighton Cannon was an American geologist specifying in geobotany and studying the effects of geological chemicals on the environment. She was a woman in science making large contributions to geology and advancements for women in science. She had a long lasting career at the United States Geological Survey in Washington, D.C., and Denver, Colorado, soon becoming well known for her research and important discoveries. Cannon, along with two colleagues at USGS, set up and participated in the first organized unit studying chemicals in the real environment. The team concluded that by analyzing plants in a given area they could determine what metals were present in the soil and earth in that same area. In 1952, Cannon published a paper based on the findings and this paved the way for more research in geology and plants, geobotany. This research developed further into an important association with health issues, including cancer, as well as aided the United States to find uranium deposits during the Cold War. As an author, she has been largely collected by libraries.
Uranium mining around Bancroft, Ontario, was conducted at four sites, beginning in the early 1950s and concluding by 1982. Bancroft was one of two major uranium-producing areas in Ontario, and one of seven in Canada, all located along the edge of the Canadian Shield. In the context of mining, the "Bancroft area" includes Haliburton, Hastings, and Renfrew counties, and all areas between Minden and Lake Clear. Activity in the mid-1950s was described by engineer A. S. Bayne in a 1977 report as the "greatest uranium prospecting rush in the world".
Heterogenite is a natural tri-valent cobalt oxyhydroxide mineral. It is the most abundant oxidised cobalt mineral in the Katanga Copperbelt, a region in the Democratic Republic of the Congo. About 70% of known heterogenite is located in the DRC.