Brucella canis

Last updated

Brucella canis
Brucella canis.jpg
Gram-stained photomicrograph depicting numerous gram-negative Brucella canis bacteria
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Hyphomicrobiales
Family: Brucellaceae
Genus: Brucella
Species:
B. canis
Binomial name
Brucella canis
Carmichael & Bruner, 1968

Brucella canis is a Gram-negative bacterium in the family Brucellaceae that causes brucellosis in dogs and other canids. It is a non-motile short-rod or coccus-shaped organism, and is oxidase, catalase, and urease positive. [1] B. canis causes infertility in both male and female dogs. It can also cause inflammation in the eyes. The hosts of B. canis ranges from domestic animals to foxes and coyotes. [2] It is passed from species to species via genital fluids. Treatments such as spaying, neutering, and long-term antibiotics have been used to combat B. canis. The species was first described in the United States in 1966 where mass abortions of beagles were documented. [3] Brucella canis can be found in both pets and wild animals and lasts the lifespan of the animal it has affected. [2] B. canis has two distinct circular chromosomes that can attribute to horizontal gene transfer. [4]

Contents

Morphology

Brucella are non-motile meaning that they cannot move themselves and they must have assistance. This is because B. canis does not have flagella. Brucella are also non-encapsulated, non-spore forming bacteria that replicate in the ER of their host cells. [5] They are Gram-negative and have a coccobacilli (short rod) shape. They have slightly rounded ends, with slightly outward curving sides. [6] The bacteria form non-hemolytic, non-pigmented convex colonies on blood agar culture media. The optimal growth temperature for B. canis is 37 °C, but growth is still possible within the range from 20 °C to 40 °C. Additionally, the pH range in which B. canis grows most effectively is from pH 6.6 - 7.4, making this organism neutrophilic in nature. [6]

Brucella have an unusual composition of fatty acids that make up their outer cell membrane. Myristic, palmitic, and stearic acids are all found in large quantities within the outer cell membrane. Cis-vaccenic and arachidonic acids are found in medium amounts, while C17 and C19 cyclopropane fatty acids are found in very limited amounts. Additionally, there are no hydroxy fatty acids present in Brucella outer cell membranes. This particular composition of fatty acids is believed to be the reason behind hydrophobic interactions that occur within the outer cell membrane and lead to greater cell stability. [6]

B. canis is also unique from other Brucella species in that the lipids that make up its phospholipid portion are mainly cis-vaccenic cyclopropane with small amounts of lactobaccilic acid. This differs from other Brucella species, as they demonstrate the opposite composition, with lactobacillic acid making up the majority of the phospholipid fraction. Brucella is unusual in this composition because lactobacillic acid is typically within Gram-positive organisms but not common within Gram-negative organisms such as Brucella. [6]

Identification

B. canis is a zoonotic organism. The bacteria are oxidase, catalase and urease positive and non-motile. Unlike haemophilus, which they resemble, they have no requirements for added X (hemin) and V (nicotinamide adenine dinucleotide) factors in cultures. Full identification is established by serology and PCR. B. canis is not acid-fast, but they tend to maintain their color when exposed to weak acids. This results in their red color when stained using Macchiavello's stain. [6] When isolated, B. canis is always in a non-smooth or mucoid form. This non smooth form has highly hydrophobic LPS imbedded in its outer membrane, which is known to be soluble in phenol-hexane-chlorophorm, rather than phenol-water like smooth forms of Brucella are known to be. [6]

Colonies of Brucella can typically start to be seen after 48 hours. These colonies tend to be 0.5-1.0 mm in diameter, with a convex shape and are typically circular. Mucoid variants such as B. canis have a sticky, glue-like texture, and have a variety of colors. B. canis can present with white, yellowish white, and even brown coloring. This is typical for both mucoid and rough Brucella variants. [6]

Metabolism

B. canis functions as a chemoorganotroph, meaning it obtains its energy from oxidation-reduction reactions, and utilizes organic electron sources. B. canis utilizes oxygen as well as nitrate as its terminal electron acceptor within its electron transport chain. This electron transport system is known to function using cytochromes, and B. canis has the ability to utilize nitrate as a terminal electron acceptor due to the organism's ability to produce nitrate reductase. [6]

While some Brucella species require supplemental CO2 for growth, B. canis does not. B. canis has demonstrated growth on media containing thionine, but no growth on media containing basic fuchsin. [6]

Genome

B. canis has two distinct circular chromosomes. These two circular chromosomes contain shared portions that can be attributed to horizontal gene transfer. The first of the two chromosomes is larger than the second, with an average of 2243 genes on chromosome 1, and 1229 on chromosome 2. [4] Chromosome 2 is much smaller than chromosome 1. Chromosome 2 was derived from a plasmid, but both chromosomes contain genetic information necessary for survival, with these essential genes being split evenly between the two. [7]

B. canis is thought to be a variant of B. suis Biovar 1, based on the genomic similarities between the two. The genomic structure of both B. canis and B. suis Biovar 1, cannot be distinguished from each other as they both demonstrate similar sizes within the two circular chromosomes present. Based on this similarity B. canis is thought to be a stable R mutant of B. suis Biovar 1. [6]

Image of B. canis colonies growing on blood agar culture media. PIXNIO-38568-4206x3153.jpg
Image of B. canis colonies growing on blood agar culture media.

Pathogenicity

The disease is characterized by epididymitis and orchitis in male dogs, endometritis, placentitis, and abortions in females, and often presents as infertility in both sexes. Other symptoms such as inflammation in the eyes and axial and appendicular skeleton; lymphadenopathy and splenomegaly, are less common. [8] Although there has been an increase in the international movement of dogs, Brucella canis is still very uncommon. [9] Signs of this disease are different in both genders of dogs; females that have B. canis infections face an abortion of their developed fetuses. Males face the chance of infertility, because they develop an antibody against their spermatozoa. This may be followed by inflammation of the testes which generally settles down a while after. Another symptom is the infection of the spinal plates or vertebrae, which is called diskospondylitis. [10] It is generally spotted in the animal's reproductive organs. This infection usually causes the animal to spontaneously abort a fetus and can also cause an animal to become sterile. [11]

Host range

The host range of the bacterium is mainly domestic dogs but evidence of infections in foxes and coyotes has been reported. [9] B. canis is a zoonotic organism [10] and although rare, humans can contract the infection. It is unlikely, but most common in dog breeders, those in laboratories dealing with the bacteria, or people who are immunocompromised. [12]

Transmission

B. canis is passed through contact with fluids from the mucous membranes of the genitals (semen and vaginal discharge), eyes, and oronasal cavities. This contact can occur during sexual activity as well as other daily grooming and social interactions.

High levels of B. canis exist in these secretions in the six weeks following abortion in females, and around six to eight weeks following infection in males. Lower levels of B. canis still remain in the semen of infected males for two years following infection, which can serve as a large source of transmission to other dogs. [9]

Urine can also serve as a route of transmission in males, as the bladder resides in close proximity to the prostate and epididymus. This leads to contamination of the urine making it another vehicle for B. canis transmission. [13]

Treatment

Treatment for B. canis is very difficult to find and often very expensive. The combination of minocycline and streptomycin is thought to be useful, but it is often unaffordable. Tetracycline can be a less expensive substitute for minocycline, but it also lowers the effect of the treatment. [14]

Long term antibiotics can be given but usually results in a relapse. Spaying and neutering can be effective, and frequent blood tests are recommended to monitor progress. Dogs in kennels that are affected by B. canis are usually euthanized for the protection of other dogs and the humans caring for them. [15]

B. canis is relatively easy to prevent in dogs. There is a simple blood test that can be done by a veterinarian. Any dog that will be used for breeding or has the capability to breed should be tested.

Ecology

Under natural conditions Brucella spp, including B. canis are obligate parasites and do not grow outside the host except in laboratory cultures but at specific temperatures and moisture levels Brucella can persist in soil and surface water up to 80 days and in frozen conditions they can survive for months. [16]

History

B. canis was discovered by Leland Carmichael in 1966, when the bacterium was identified in canine vaginal discharge and the tissues from mass abortions in beagles. [9] [17] B. canis was said to be a biovar of B. suis. With recent research, PCR assay data was able to contradict B. canis and B. suis. PCR data showed a complete difference between the two strains along with B. suis biovars unattained from B. canis DNA. PCR assays have been proven beneficial when differentiating between Brucella strains and vaccine strains. [18]

Related Research Articles

Ehrlichiosis is a tick-borne disease of dogs usually caused by the rickettsial agent Ehrlichia canis. Ehrlichia canis is the pathogen of animals. Humans can become infected by E. canis and other species after tick exposure. German Shepherd Dogs are thought to be susceptible to a particularly severe form of the disease; other breeds generally have milder clinical signs. Cats can also be infected.

Brucellosis is a zoonosis caused by ingestion of unpasteurized milk from infected animals, or close contact with their secretions. It is also known as undulant fever, Malta fever, and Mediterranean fever.

<i>Carnivore protoparvovirus 1</i> Species of parvovirus

Carnivore protoparvovirus 1 is a species of parvovirus that infects carnivorans. It causes a highly contagious disease in both dogs and cats separately. The disease is generally divided into two major genogroups: FPV containing the classical feline panleukopenia virus (FPLV), and CPV-2 containing the canine parvovirus type 2 (CPV-2) which appeared in the 1970s.

<i>Neospora caninum</i> Species of Conoidasida in the apicomplex phylum

Neospora caninum is a coccidian parasite that was identified as a species in 1988. Prior to this, it was misclassified as Toxoplasma gondii due to structural similarities. The genome sequence of Neospora caninum has been determined by the Wellcome Trust Sanger Institute and the University of Liverpool. Neospora caninum is an important cause of spontaneous abortion in infected livestock.

<span class="mw-page-title-main">Canine transmissible venereal tumor</span> Histiocytic tumor of the external genitalia of the dog and other canines

A canine transmissible venereal tumor (CTVT), also known as a transmissible venereal tumor (TVT), canine transmissible venereal sarcoma (CTVS), sticker tumor and infectious sarcoma, is a histiocytic tumor of the external genitalia of the dog and other canines, and is transmitted from animal to animal during mating. It is one of only three known transmissible cancers in mammals; the others are devil facial tumor disease, a cancer which occurs in Tasmanian devils, and contagious reticulum cell sarcoma of the Syrian hamster.

<i>Brucella</i> Genus of bacteria

Brucella is a genus of Gram-negative bacteria, named after David Bruce (1855–1931). They are small, nonencapsulated, nonmotile, facultatively intracellular coccobacilli.

<span class="mw-page-title-main">Dog health</span> Health of dogs

The health of dogs is a well studied area in veterinary medicine.

<span class="mw-page-title-main">Canine parvovirus</span> Contagious virus mainly affecting dogs

Canine parvovirus is a contagious virus mainly affecting dogs. CPV is highly contagious and is spread from dog to dog by direct or indirect contact with their feces. Vaccines can prevent this infection, but mortality can reach 91% in untreated cases. Treatment often involves veterinary hospitalization. Canine parvovirus often infects other mammals including foxes, wolves, cats, and skunks. Felines (cats) are also susceptible to panleukopenia, a different strain of parvovirus.

<i>Brucella suis</i> Bacterium that causes swine brucellosis

Brucella suis is a bacterium that causes swine brucellosis, a zoonosis that affects pigs. The disease typically causes chronic inflammatory lesions in the reproductive organs of susceptible animals or orchitis, and may even affect joints and other organs. The most common symptom is abortion in pregnant susceptible sows at any stage of gestation. Other manifestations are temporary or permanent sterility, lameness, posterior paralysis, spondylitis, and abscess formation. It is transmitted mainly by ingestion of infected tissues or fluids, semen during breeding, and suckling infected animals.

Canine reproduction is the process of sexual reproduction in domestic dogs, wolves, coyotes and other canine species.

<i>Brucella abortus</i> Species of bacterium

Brucella abortus is a Gram-negative bacterium in the family Brucellaceae and is one of the causative agents of brucellosis. The rod-shaped pathogen is classified under the domain Bacteria. The prokaryotic B. abortus is non-spore-forming, non-motile and aerobic.

<span class="mw-page-title-main">Ehrlichiosis</span> Medical condition

Ehrlichiosis is a tick-borne bacterial infection, caused by bacteria of the family Anaplasmataceae, genera Ehrlichia and Anaplasma. These obligate intracellular bacteria infect and kill white blood cells.

Campylobacter upsaliensis is a gram-negative bacteria in the Campylobacter genus. C. upsaliensis is found worldwide, and is a common cause of campylobacteriosis in humans, as well as gastroenteritis in dogs and cats. Human infections are primarily associated with raw or undercooked meat and contaminated water sources, however there is some zoonotic risk associated with the spread from dogs and cats. C. upsaliensis primarily affects the gastrointestinal tract as it damages gastrointestinal epithelial cells. There are many methods for detecting C.upsaliensis including PCR and ELISA, however there is no current gold standard in detection techniques. Infection is typically self limiting, however there is antimicrobial therapy available.

<i>Ehrlichia ewingii</i> Species of bacterium

Ehrlichia ewingii is a species of rickettsiales bacteria. It has recently been associated with human infection, and can be detected via PCR serological testing. The name Ehrlichia ewingii was proposed in 1992.

Ehrlichia canis is an obligate intracellular bacterium that acts as the causative agent of ehrlichiosis, a disease most commonly affecting canine species. This pathogen is present throughout the United States, South America, Asia, Africa and recently in the Kimberley region of Australia. First defined in 1935, E. canis emerged in the United States in 1963 and its presence has since been found in all 48 contiguous United States. Reported primarily in dogs, E. canis has also been documented in felines and humans, where it is transferred most commonly via Rhipicephalus sanguineus, the brown dog tick.

Pasteurella canis is a Gram-negative, nonmotile, penicillin-sensitive coccobacillus of the family Pasteurellaceae. Bacteria from this family cause zoonotic infections in humans, which manifest themselves as skin or soft-tissue infections after an animal bite. It has been known to cause serious disease in immunocompromised patients.

Staphylococcus schleiferi is a Gram-positive, cocci-shaped bacterium of the family Staphylococcaceae. It is facultatively anaerobic, coagulase-variable, and can be readily cultured on blood agar where the bacterium tends to form opaque, non-pigmented colonies and beta (β) hemolysis. There exists two subspecies under the species S. schleiferi: Staphylococcus schleiferi subsp. schleiferi and Staphylococcus schleiferi subsp. coagulans.

Staphylococcus pseudintermedius is a gram positive coccus bacteria of the genus Staphylococcus found worldwide. It is primarily a pathogen for domestic animals, but has been known to affect humans as well. S. pseudintermedius is an opportunistic pathogen that secretes immune modulating virulence factors, has many adhesion factors, and the potential to create biofilms, all of which help to determine the pathogenicity of the bacterium. Diagnoses of Staphylococcus pseudintermedius have traditionally been made using cytology, plating, and biochemical tests. More recently, molecular technologies like MALDI-TOF, DNA hybridization and PCR have become preferred over biochemical tests for their more rapid and accurate identifications. This includes the identification and diagnosis of antibiotic resistant strains.

<i>Brucella ceti</i> Species of bacterium

Brucella ceti is a gram negative bacterial pathogen of the Brucellaceae family that causes brucellosis in cetaceans. Brucella ceti has been found in both classes of cetaceans, mysticetes and odontocetes. Brucellosis in some dolphins and porpoises can result in serious clinical signs including fetal abortions, male infertility, neurobrucellosis, cardiopathies, bone and skin lesions, stranding events, and death.

<i>Babesia canis</i> Species of single-celled organism

Babesia canis is a parasite that infects red blood cells and can lead to anemia. This is a species that falls under the overarching genus Babesia. It is transmitted by the brown dog tick and is one of the most common piroplasm infections. The brown dog tick is adapted to warmer climates and is found in both Europe and the United States, especially in shelters and greyhound kennels. In Europe, it is also transmitted by Dermacentor ticks with an increase in infections reported due to people traveling with their pets.

References

  1. Mantur BG, Amarnath SK, Shinde RS (July 2007). "Review of clinical and laboratory features of human brucellosis". Indian Journal of Medical Microbiology . 25 (3): 188–202. doi: 10.1016/S0255-0857(21)02105-8 . hdl: 1807/53456 . PMID   17901634.
  2. 1 2 Kurmanov B, Zincke D, Su W, Hadfield TL, Aikimbayev A, Karibayev T, Berdikulov M, Orynbayev M, Nikolich MP, Blackburn JK (August 2022). "Assays for Identification and Differentiation of Brucella Species: A Review". Microorganisms. 10 (8): 1584. doi: 10.3390/microorganisms10081584 . PMC   9416531 . PMID   36014002.
  3. Morisset R, Spink WW (November 1969). "Epidemic canine brucellosis due to a new species, brucella canis". The Lancet . 2 (7628): 1000–1002. doi:10.1016/s0140-6736(69)90551-0. PMC   2441019 . PMID   4186949.
  4. 1 2 Wattam, Alice R.; Williams, Kelly P.; Snyder, Eric E.; Almeida, Nalvo F.; Shukla, Maulik; Dickerman, A. W.; Crasta, O. R.; Kenyon, R.; Lu, J.; Shallom, J. M.; Yoo, H.; Ficht, T. A.; Tsolis, R. M.; Munk, C.; Tapia, R. (June 2009). "Analysis of Ten Brucella Genomes Reveals Evidence for Horizontal Gene Transfer Despite a Preferred Intracellular Lifestyle". Journal of Bacteriology. 191 (11): 3569–3579. doi:10.1128/JB.01767-08. ISSN   0021-9193. PMC   2681906 . PMID   19346311.
  5. González-Espinoza, Gabriela; Arce-Gorvel, Vilma; Mémet, Sylvie; Gorvel, Jean-Pierre (2021-02-09). "Brucella: Reservoirs and Niches in Animals and Humans". Pathogens. 10 (2): 186. doi: 10.3390/pathogens10020186 . ISSN   2076-0817. PMC   7915599 . PMID   33572264.
  6. 1 2 3 4 5 6 7 8 9 10 Bergey, David Hendricks (2001). Bergey's Manual® of Systematic Bacteriology. Springer Science & Business Media. ISBN   978-0-387-24145-6.
  7. Ficht, Thomas (June 2010). "Brucella taxonomy and evolution". Future Microbiology. 5 (6): 859–866. doi:10.2217/fmb.10.52. ISSN   1746-0913. PMC   2923638 . PMID   20521932.
  8. Brower A, Okwumabua O, Massengill C, Muenks Q, Vanderloo P, Duster M, Homb K, Kurth K (September 2007). "Investigation of the spread of Brucella canis via the U.S. interstate dog trade". International Journal of Infectious Diseases . 11 (5): 454–458. doi: 10.1016/j.ijid.2006.12.009 . PMID   17331783.
  9. 1 2 3 4 Cosford, Kevin L. (2018). "Brucella canis: An update on research and clinical management". The Canadian Veterinary Journal. 59 (1): 74–81. PMC   5731389 . PMID   29302106.
  10. 1 2 Forbes JN, Frederick SW, Savage MY, Cross AR (December 2019). "Brucella canis sacroiliitis and discospondylitis in a dog". The Canadian Veterinary Journal. 60 (12): 1301–1304. PMC   6855227 . PMID   31814636.
  11. Canine Brucellosis: Facts for Dog Owners
  12. Brucellosis FAQs for Dog Owners. Georgia Division of Public Health in Partnership with the Georgia Department of Agriculture Office of the State Veterinarian, and the University of Georgia College of Veterinary Medicine, 13 June 2006, https://agr.georgia.gov/Data/Sites/1/media/ag_animalindustry/animal_health/files/caninebrucellosiskennelanowner.pdf.
  13. Hollett, R. Bruce (2006-08-01). "Canine brucellosis: Outbreaks and compliance". Theriogenology. Proceedings of the Annual Conference of the Society for Theriogenology 2006. 66 (3): 575–587. doi:10.1016/j.theriogenology.2006.04.011. ISSN   0093-691X. PMID   16716382. S2CID   9154500.
  14. Wanke, M. M (2004-07-01). "Canine brucellosis". Animal Reproduction Science. 82–83: 195–207. doi:10.1016/j.anireprosci.2004.05.005. ISSN   0378-4320. PMID   15271453.
  15. Canine Brucellosis and Foster-Based Dog Rescue Programs. Minnesota Department of Health, Jan. 2016, https://www.health.state.mn.us/diseases/brucellosis/canine.pdf.
  16. Xue S, Biondi EG (July 2019). "Coordination of symbiosis and cell cycle functions in Sinorhizobium meliloti" (PDF). Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1862 (7): 691–696. doi:10.1016/j.bbagrm.2018.05.003. PMID   29783033. S2CID   29166156.
  17. Makloski, Chelsea L. (2011-11-01). "Canine Brucellosis Management". Veterinary Clinics of North America: Small Animal Practice. Companion Animal Medicine: Evolving Infectious, Toxicological, and Parasitic Diseases. 41 (6): 1209–1219. doi:10.1016/j.cvsm.2011.08.001. ISSN   0195-5616. PMID   22041212.
  18. López-Goñi, Ignacio; García-Yoldi, David; Marín, Clara M.; de Miguel, María J.; Barquero-Calvo, Elías; Guzmán-Verri, Caterina; Albert, David; Garin-Bastuji, Bruno (December 2011). "New Bruce-ladder multiplex PCR assay for the biovar typing of Brucella suis and the discrimination of Brucella suis and Brucella canis". Veterinary Microbiology. 154 (1–2): 152–155. doi:10.1016/j.vetmic.2011.06.035. hdl: 11056/22276 . PMID   21782356.