Butyrivibrio proteoclasticus

Last updated

Butyrivibrio proteoclasticus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacillota
Class: Clostridia
Order: Eubacteriales
Family: Lachnospiraceae
Genus: Butyrivibrio
Species:
B. proteoclasticus
Binomial name
Butyrivibrio proteoclasticus
(Attwood et al. 1996) Moon et al. 2008 [1]
Synonyms
  • Clostridium proteoclasticum Attwood et al. 1996

Butyrivibrio proteoclasticus is a bacterium from the family Lachnospiraceae originally described in the genus Clostridium .

Butyrivibrio proteoclasticus B316T

Butyrivibrio proteoclasticus B316T was the first Butyrivibrio species to have its genome sequenced. [2] It was first isolated and described by Attwood et al. (1996), [3] and was originally assigned to the genus Clostridium based on its similarity to Clostridium aminophilum , a member of the Clostridium sub-cluster XIVa. Further analysis has shown that it is more appropriately placed within the genus Butyrivibrio and the organism was given its current name. [4] Within this genus its 16S rDNA sequence is most similar to, but distinct from, that of B. hungatei .

B. proteoclasticus is found in rumen contents at significant concentrations of from 2.01 x 106/ml to 3.12 x 107/mL as estimated by competitive PCR [5] or 2.2% to 9.4% of the total eubacterial DNA within the rumen, as estimated by real time PCR. [6] B. proteoclasticus cells are anaerobic, slightly curved rods, commonly found singly or in short chains, but it is not unusual for them to form long chains. They possess a single sub-terminal flagellum, but unlike other Butyrivibrio species, they are not motile. They are ultrastructurally Gram-positive, although as with all Butyrivibrio species, they stain Gram-negative [3]

B. proteoclasticus has been shown to have an important role in biohydrogenation, converting linoleic acid to stearic acid. [7]

Related Research Articles

<i>Clostridium botulinum</i> Species of endospore forming bacterium

Clostridium botulinum is a gram-positive, rod-shaped, anaerobic, spore-forming, motile bacterium with the ability to produce the neurotoxin botulinum.

<i>Clostridium</i> Genus of bacteria, which includes several human pathogens

Clostridium is a genus of anaerobic, Gram-positive bacteria. Species of Clostridium inhabit soils and the intestinal tract of animals, including humans. This genus includes several significant human pathogens, including the causative agents of botulism and tetanus. It also formerly included an important cause of diarrhea, Clostridioides difficile, which was reclassified into the Clostridioides genus in 2016.

Helicase-dependent amplification (HDA) is a method for in vitro DNA amplification that takes place at a constant temperature.

<span class="mw-page-title-main">Clostridiaceae</span> Family of bacteria

The Clostridiaceae are a family of the bacterial class Clostridia, and contain the genus Clostridium.

Thermus thermophilus is a Gram-negative bacterium used in a range of biotechnological applications, including as a model organism for genetic manipulation, structural genomics, and systems biology. The bacterium is extremely thermophilic, with an optimal growth temperature of about 65 °C (149 °F). Thermus thermophilus was originally isolated from a thermal vent within a hot spring in Izu, Japan by Tairo Oshima and Kazutomo Imahori. The organism has also been found to be important in the degradation of organic materials in the thermogenic phase of composting. T. thermophilus is classified into several strains, of which HB8 and HB27 are the most commonly used in laboratory environments. Genome analyses of these strains were independently completed in 2004. Thermus also displays the highest frequencies of natural transformation known to date.

Fibrobacter succinogenes is a cellulolytic bacterium species in the genus Fibrobacter. It is present in the rumen of cattle. F. succinogenes is a gram negative, rod-shaped, obligate anaerobe that is a major contributor to cellulose digestion. Since its discovery in the 1950s, it has been studied for its role in herbivore digestion and cellulose fermentation, which can be utilized in biofuel production.

<i>Photobacterium profundum</i> Species of bacterium

Photobacterium profundum is a deep sea Gammaproteobacterium, belonging to the family Vibrionaceae and genus Photobacterium. Like other members of this genus, P. profundum is a marine organism and has two circular chromosomes. P. profundum is a gram-negative rod with the ability for growth at temperatures from 0 °C to 25 °C and pressures from 0.1 MPa to 70 MPa depending on the strain. It has a requirement for salt, is able to metabolise a wide range of simple and complex carbohydrates and has two flagella systems. Cells are rod shape, 2-4μm long and 0.8-1.0μm wide, with a single unsheathed flagella. This bacterium was originally isolated in 1986 from the Sulu Sea and there are currently 4 cultured wild-type strains of P. profundum,.

Butyrivibrio is a genus of bacteria in Class Clostridia. Bacteria of this genus are common in the gastrointestinal systems of many animals. Genus Butyrivibrio was first described by Bryant and Small (1956) as anaerobic, butyric acid-producing, curved rods. Butyrivibrio cells are small, typically 0.4 – 0.6 µm by 2 – 5 µm. They are motile, using a single polar or subpolar monotrichous flagellum. They are commonly found singly or in short chains but it is not unusual for them to form long chains. Despite historically being described as Gram-negative, their cell walls contain derivatives of teichoic acid, and electron microscopy indicates that bacteria of this genus have a Gram-positive cell wall type. It is thought that they appear Gram-negative when Gram stained because their cell walls thin to 12 to 18 nm as they reach stationary phase.

Clostridium phytofermentans is an obligately anaerobic rod-shaped spore-forming, Gram-positive bacterium in the family Lachnospiraceae. It is a model organism of interest for its ability to ferment diverse plant polysaccharides including cellulose, hemicellulose, and pectin to ethanol, acetate, and hydrogen. The C. phytofermentans 4.8 Mb genome has been fully sequenced, revealing it contains over 170 enzymes in the CAZy database, though one hydrolase appears to be essential for degrading cellulose.

<i>Clostridium sporogenes</i> Species of bacterium

Clostridium sporogenes is a species of Gram-positive bacteria that belongs to the genus Clostridium. Like other strains of Clostridium, it is an anaerobic, rod-shaped bacterium that produces oval, subterminal endospores and is commonly found in soil. Unlike Clostridium botulinum, it does not produce the botulinum neurotoxins. In colonized animals, it has a mutualistic rather than pathogenic interaction with the host.

Acetoanaerobium sticklandii is an anaerobic, motile, gram-positive bacterium. It was first isolated in 1954 from the black mud of the San Francisco Bay Area by T.C. Stadtman, who also named the species. A. sticklandii is not pathogenic in humans.

<i>Diplorickettsia massiliensis</i> Species of bacterium

Diplorickettsia massiliensis species is an obligate intracellular, gram negative bacterium isolated from Ixodes ricinus ticks collected in Slovak republic forest geographically from southeastern part of Rovinka in 2006. They belong to the gammaproteobacteria class and are non endospore forming, small rods usually grouped in pairs. The bacteria are non-motile, and 16S rRNA, rpoB, parC and ftsY gene sequencing indicate that this bacterium is clearly different from all other recognized species. An initial phylogenetic analysis based on 16S rRNA, clustered D. massiliensis with Rickettsiella grylli. Because of its low 16S rDNA similarity (94%) with R. grylli, it was classified as a new genus Diplorickettsia into the family Coxiellaceae and the order Legionellales. D. massiliensis strain 20B was identified in three patients with suspected tick-borne infections that exhibited a specific seroconversion. The evidence of infection was further reconfirmed by using PCR-assay, thus established its role as a human pathogen and later whole genome sequencing was performed.

Acidithiobacillus caldus formerly belonged to the genus Thiobacillus prior to 2000, when it was reclassified along with a number of other bacterial species into one of three new genera that better categorize sulfur-oxidizing acidophiles. As a member of the Gammaproteobacteria class of Pseudomonadota, A. caldus may be identified as a Gram-negative bacterium that is frequently found in pairs. Considered to be one of the most common microbes involved in biomining, it is capable of oxidizing reduced inorganic sulfur compounds (RISCs) that form during the breakdown of sulfide minerals. The meaning of the prefix acidi- in the name Acidithiobacillus comes from the Latin word acidus, signifying that members of this genus love a sour, acidic environment. Thio is derived from the Greek word thios and describes the use of sulfur as an energy source, and bacillus describes the shape of these microorganisms, which are small rods. The species name, caldus, is derived from the Latin word for warm or hot, denoting this species' love of a warm environment.

Clostridium leptum is a bacterium species in the genus Clostridium.

Syntrophococcus sucromutans is a Gram-negative strictly anaerobic chemoorganotrophic Bacillota. These bacteria can be found forming small chains in the habitat where it was first isolated, the rumen of cows. It is the type strain of genus Syntrophococcus and it has an uncommon one-carbon metabolic pathway, forming acetate from formate as a product of sugar oxidation.

Clostridium aminophilum is a species of gram-positive ammonia-producing ruminal bacteria, with type strain FT.

<i>Clostridioides difficile</i> Species of bacteria

Clostridioides difficile is a bacterium known for causing serious diarrheal infections, and may also cause colon cancer. It is known also as C. difficile, or C. diff, and is a Gram-positive species of spore-forming bacteria. Clostridioides spp. are anaerobic, motile bacteria, ubiquitous in nature and especially prevalent in soil. Its vegetative cells are rod-shaped, pleomorphic, and occur in pairs or short chains. Under the microscope, they appear as long, irregular cells with a bulge at their terminal ends. Under Gram staining, C. difficile cells are Gram-positive and show optimum growth on blood agar at human body temperatures in the absence of oxygen. C. difficile is catalase- and superoxide dismutase-negative, and produces up to three types of toxins: enterotoxin A, cytotoxin B and Clostridioides difficile transferase. Under stress conditions, the bacteria produce spores that are able to tolerate extreme conditions that the active bacteria cannot tolerate.

Rathayibacter toxicus is a phytopathogenic bacterium known for causing annual ryegrass toxicity (ARGT) commonly found in South and Western Australia.

<span class="mw-page-title-main">3-Indolepropionic acid</span> Chemical compound

3-Indolepropionic acid (IPA), or indole-3-propionic acid, has been studied for its therapeutic therapeutic value in the treatment of Alzheimer's disease. As of 2022 IPA shows potential in the treatment of this disease, though the therapeutic effect of IPA depends on dose and time of therapy initiation.

Methanogens are a group of microorganisms that produce methane as a byproduct of their metabolism. They play an important role in the digestive system of ruminants. The digestive tract of ruminants contains four major parts: rumen, reticulum, omasum and abomasum. The food with saliva first passes to the rumen for breaking into smaller particles and then moves to the reticulum, where the food is broken into further smaller particles. Any indigestible particles are sent back to the rumen for rechewing. The majority of anaerobic microbes assisting the cellulose breakdown occupy the rumen and initiate the fermentation process. The animal absorbs the fatty acids, vitamins and nutrient content on passing the partially digested food from the rumen to the omasum. This decreases the pH level and initiates the release of enzymes for further breakdown of the food which later passes to the abomasum to absorb remaining nutrients before excretion. This process takes about 9–12 hours.

References

  1. Page Species: Butyrivibrio proteoclasticus on "LPSN - List of Prokaryotic names with Standing in Nomenclature". Deutsche Sammlung von Mikroorganismen und Zellkulturen . Retrieved 2022-10-03.
  2. Kelly W. J., et al. (2010). (2010). Kelly, W. J.; Leahy, S. C.; Altermann, E.; Yeoman, C. J.; Dunne, J. C.; Kong, Z.; Pacheco, D. M.; Li, D.; Noel, S. J.; Moon, C. D.; Cookson, A. L.; Attwood, G. T. (2010). "The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316T highlights adaptation to a polysaccharide-rich environment". PLOS ONE. 5 (8): e11942. Bibcode:2010PLoSO...511942K. doi: 10.1371/journal.pone.0011942 . PMC   2914790 . PMID   20689770.. PLoS One 5(8): e11942
  3. 1 2 Attwood et al., 1996
  4. Moon et al., 2008
  5. Reilly & Attwood 1998
  6. Paillard et al., 2007)
  7. Wallace et al., 2006