CIDNP (chemically induced dynamic nuclear polarization), often pronounced like "kidnip", is a nuclear magnetic resonance (NMR) technique that is used to study chemical reactions that involve radicals. It detects the non-Boltzmann (non-thermal) nuclear spin state distribution produced in these reactions as enhanced absorption or emission signals.
CIDNP was discovered in 1967 by Bargon and Fischer, and, independently, by Ward and Lawler. [1] [2] Early theories were based on dynamic nuclear polarisation (hence the name) using the Overhauser effect. The subsequent experiments, however, have found that in many cases DNP fails to explain CIDNP polarization phase. In 1969 an alternative explanation which relies on the nuclear spins affecting the probability of a radical pair recombining or separating.
It is related to chemically induced dynamic electron polarization (CIDEP) insofar as the radical-pair mechanism explains both phenomena. [3]
The effect is detected by NMR spectroscopy, usually using 1H NMR spectrum, as enhanced absorption or emission signals ("negative peaks"). The effect arises when unpaired electrons (radicals) are generated during a chemical reaction involving heat or light within the NMR tube. The magnetic field in the spectrometer interacts with the magnetic fields that are caused by the spins of the protons. The two spins of protons produce two slightly different energy levels. In normal conditions, slightly more nuclei, about 10 parts in a million are found in the lower energy level. In contrast, CIDNP produces greatly imbalanced populations, with far greater numbers of spins in upper energy level in some products of the reaction and greater numbers in the lower energy level in other products. The spectrometer uses radio frequencies to detect these differences.
The radical pair mechanism is currently accepted as the most common cause of CIDNP. This theory was proposed by Closs, [4] and, independently, by Kaptein and Oosterhoff. [5] There are, however, exceptions, and the DNP mechanism was found to be operational, for example, in many fluorine-containing radicals.
The chemical bond is a pair of electrons with opposite spins. Photochemical reactions or heat can cause an electron in the bond to change its spin. The electrons are now unpaired, in what is known as a triplet state, and the bond is broken. The orientation of some of the nuclear spins will favour some unpaired electrons changing their spins and so revert to the normal pairs as chemical bonds. This quantum interaction is known as spin–orbit coupling. Other nuclear spins will exert a different influence on the triplet pairs, giving the radical pairs more time to separate and react with other molecules. Consequently, the products of recombination will have different distributions of nuclear spins from the products produced by separated radicals.
The generation of CIDNP in a typical photochemical system (target + photosensitizer, flavin in this example) is a cyclic photochemical process shown schematically in Figure 1. The chain of reactions is initiated by a blue light photon, which excites the flavin mononucleotide (FMN) photosensitizer to the singlet excited state. The fluorescence quantum yield of this state is rather low, and approximately half of the molecules undergo intersystem crossing into the long-lived triplet state. Triplet FMN has a remarkable electron affinity. If a molecule with a low ionization potential (e.g. phenols, polyaromatics) is present in the system, the diffusion-limited electron transfer reaction forms a spin-correlated triplet electron transfer state – a radical pair. The kinetics are complicated and may involve multiple protonations and deprotonations, and hence exhibit pH dependence.
The radical pair may either cross over to a singlet electron state and then recombine, or separate and perish in side reactions. The relative probability of these two pathways for a given radical pair depends on the nuclear spin state and leads to the nuclear spin state sorting and observable nuclear polarization.
Detected as enhanced absorptive or emissive signals in the NMR spectra of the reaction products, CIDNP has been exploited for the last 30 years to characterise transient free radicals and their reaction mechanisms. In certain cases, CIDNP also offers the possibility of large improvements in NMR sensitivity. The principal application of this photo-CIDNP technique, as devised by Kaptein in 1978, has been to proteins in which the aromatic amino acid residues histidine, tryptophan and tyrosine can be polarized using flavins or other aza-aromatics as photosensitisers. The key feature of the method is that only solvent accessible histidine, tryptophan and tyrosine residues can undergo the radical pair reactions that result in nuclear polarization. Photo-CIDNP has thus been used to probe the surface structure of proteins, both in native and partially folded states, and their interactions with molecules that modify the accessibility of the reactive side chains.
Although usually observed in liquids, the photo-CIDNP effect has also been detected in solid state, for example on 13C and 15N nuclei in photosynthetic reaction centres, where significant nuclear polarization can accumulate as a result of spin selection processes in the electron transfer reactions.
Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible (400–750 nm), or infrared radiation (750–2500 nm).
Molecular hydrogen occurs in two isomeric forms, one with its two proton nuclear spins aligned parallel (orthohydrogen), the other with its two proton spins aligned antiparallel (parahydrogen). These two forms are often referred to as spin isomers or as nuclear spin isomers.
Dynamic nuclear polarization (DNP) results from transferring spin polarization from electrons to nuclei, thereby aligning the nuclear spins to the extent that electron spins are aligned. Note that the alignment of electron spins at a given magnetic field and temperature is described by the Boltzmann distribution under the thermal equilibrium. It is also possible that those electrons are aligned to a higher degree of order by other preparations of electron spin order such as: chemical reactions, optical pumping and spin injection. DNP is considered one of several techniques for hyperpolarization. DNP can also be induced using unpaired electrons produced by radiation damage in solids.
Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field. This re-orientation occurs with absorption of electromagnetic radiation in the radio frequency region from roughly 4 to 900 MHz, which depends on the isotopic nature of the nucleus and increased proportionally to the strength of the external magnetic field. Notably, the resonance frequency of each NMR-active nucleus depends on its chemical environment. As a result, NMR spectra provide information about individual functional groups present in the sample, as well as about connections between nearby nuclei in the same molecule. As the NMR spectra are unique or highly characteristic to individual compounds and functional groups, NMR spectroscopy is one of the most important methods to identify molecular structures, particularly of organic compounds.
Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly useful for studying metal complexes and organic radicals. EPR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 1944, and was developed independently at the same time by Brebis Bleaney at the University of Oxford.
Solid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions. As a result, solid-state NMR spectra are characterised by larger linewidths than in solution state NMR, which can be utilized to give quantitative information on the molecular structure, conformation and dynamics of the material. Solid-state NMR is often combined with magic angle spinning to remove anisotropic interactions and improve the resolution as well as the sensitivity of the technique.
Ferromagnetic resonance, or FMR, is coupling between an electromagnetic wave and the magnetization of a medium through which it passes. This coupling induces a significant loss of power of the wave. The power is absorbed by the precessing magnetization of the material and lost as heat. For this coupling to occur, the frequency of the incident wave must be equal to the precession frequency of the magnetization and the polarization of the wave must match the orientation of the magnetization.
In magnetic resonance imaging (MRI) and nuclear magnetic resonance spectroscopy (NMR), an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance (Larmor) frequency of the nuclei. At thermal equilibrium, nuclear spins precess randomly about the direction of the applied field. They become abruptly phase coherent when they are hit by radiofrequency (RF) pulses at the resonant frequency, created orthogonal to the field. The RF pulses cause the population of spin-states to be perturbed from their thermal equilibrium value. The generated transverse magnetization can then induce a signal in an RF coil that can be detected and amplified by an RF receiver. The return of the longitudinal component of the magnetization to its equilibrium value is termed spin-latticerelaxation while the loss of phase-coherence of the spins is termed spin-spin relaxation, which is manifest as an observed free induction decay (FID).
Spin chemistry is a sub-field of chemistry positioned at the intersection of chemical kinetics, photochemistry, magnetic resonance and free radical chemistry, that deals with magnetic and spin effects in chemical reactions. Spin chemistry concerns phenomena such as chemically induced dynamic nuclear polarization (CIDNP), chemically induced electron polarization (CIDEP), magnetic isotope effects in chemical reactions, and it is hypothesized to be key in the underlying mechanism for avian magnetoreception and consciousness.
Peter John Hore is a British chemist and academic. He is a Professor of Chemistry at the University of Oxford and fellow of Corpus Christi College, Oxford. He is the author of two Oxford Chemistry Primers on Nuclear Magnetic Resonance (NMR) and research articles primarily in the area of NMR, electron paramagnetic resonance (EPR), spin chemistry and magnetoreception during bird migration.
In nuclear chemistry and nuclear physics, J-couplings are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that arises from hyperfine interactions between the nuclei and local electrons. In NMR spectroscopy, J-coupling contains information about relative bond distances and angles. Most importantly, J-coupling provides information on the connectivity of chemical bonds. It is responsible for the often complex splitting of resonance lines in the NMR spectra of fairly simple molecules.
Spin trapping is an analytical technique employed in chemistry and biology for the detection and identification of short-lived free radicals through the use of electron paramagnetic resonance (EPR) spectroscopy. EPR spectroscopy detects paramagnetic species such as the unpaired electrons of free radicals. However, when the half-life of radicals is too short to detect with EPR, compounds known as spin traps are used to react covalently with the radical products and form more stable adduct that will also have paramagnetic resonance spectra detectable by EPR spectroscopy. The use of radical-addition reactions to detect short-lived radicals was developed by several independent groups by 1968.
Zero- to ultralow-field (ZULF) NMR is the acquisition of nuclear magnetic resonance (NMR) spectra of chemicals with magnetically active nuclei in an environment carefully screened from magnetic fields. ZULF NMR experiments typically involve the use of passive or active shielding to attenuate Earth’s magnetic field. This is in contrast to the majority of NMR experiments which are performed in high magnetic fields provided by superconducting magnets. In ZULF experiments the sample is moved through a low field magnet into the "zero field" region where the dominant interactions are nuclear spin-spin couplings, and the coupling between spins and the external magnetic field is a perturbation to this. There are a number of advantages to operating in this regime: magnetic-susceptibility-induced line broadening is attenuated which reduces inhomogeneous broadening of the spectral lines for samples in heterogeneous environments. Another advantage is that the low frequency signals readily pass through conductive materials such as metals due to the increased skin depth; this is not the case for high-field NMR for which the sample containers are usually made of glass, quartz or ceramic. High-field NMR employs inductive detectors to pick up the radiofrequency signals, but this would be inefficient in ZULF NMR experiments since the signal frequencies are typically much lower. The development of highly sensitive magnetic sensors in the early 2000s including SQUIDs, magnetoresistive sensors, and SERF atomic magnetometers made it possible to detect NMR signals directly in the ZULF regime. Previous ZULF NMR experiments relied on indirect detection where the sample had to be shuttled from the shielded ZULF environment into a high magnetic field for detection with a conventional inductive pick-up coil. One successful implementation was using atomic magnetometers at zero magnetic field working with rubidium vapor cells to detect zero-field NMR.
In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. High-resolution nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI). The original application of NMR to condensed matter physics is nowadays mostly devoted to strongly correlated electron systems. It reveals large many-body couplings by fast broadband detection and should not be confused with solid state NMR, which aims at removing the effect of the same couplings by Magic Angle Spinning techniques.
Electron nuclear double resonance (ENDOR) is a magnetic resonance technique for elucidating the molecular and electronic structure of paramagnetic species. The technique was first introduced to resolve interactions in electron paramagnetic resonance (EPR) spectra. It is currently practiced in a variety of modalities, mainly in the areas of biophysics and heterogeneous catalysis.
Paramagnetic nuclear magnetic resonance spectroscopy refers to nuclear magnetic resonance (NMR) spectroscopy of paramagnetic compounds. Although most NMR measurements are conducted on diamagnetic compounds, paramagnetic samples are also amenable to analysis and give rise to special effects indicated by a wide chemical shift range and broadened signals. Paramagnetism diminishes the resolution of an NMR spectrum to the extent that coupling is rarely resolved. Nonetheless spectra of paramagnetic compounds provide insight into the bonding and structure of the sample. For example, the broadening of signals is compensated in part by the wide chemical shift range (often 200 ppm in 1H NMR). Since paramagnetism leads to shorter relaxation times (T1), the rate of spectral acquisition can be high.
Spectroelectrochemistry (SEC) is a set of multi-response analytical techniques in which complementary chemical information is obtained in a single experiment. Spectroelectrochemistry provides a whole vision of the phenomena that take place in the electrode process. The first spectroelectrochemical experiment was carried out by Theodore Kuwana, PhD, in 1964.
The Koelsch radical is a chemical compound that is an unusually stable carbon-centered radical, due to its resonance structures.
Anne Lesage is a French engineer who is a group leader at the French National Centre for Scientific Research. She is based at the High Field NMR Centre of the Lyon Institute of Analytical Sciences, where she develops novel nuclear magnetic resonance approaches to characterise solid-state materials.