CUL3

Last updated
CUL3
Protein CUL3 PDB 1iuy.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CUL3 , CUL-3, PHA2E, cullin 3, NEDAUS
External IDs OMIM: 603136 MGI: 1347360 HomoloGene: 2661 GeneCards: CUL3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001257197
NM_001257198
NM_003590

NM_016716
NM_001313728

RefSeq (protein)

NP_001244126
NP_001244127
NP_003581

NP_001300657
NP_057925

Location (UCSC) Chr 2: 224.47 – 224.59 Mb Chr 1: 80.24 – 80.32 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cullin 3 is a protein that in humans is encoded by the CUL3 gene. [5] [6] [7]

Contents

Cullin 3 protein belongs to the family of cullins which in mammals contains eight proteins (Cullin 1, Cullin 2, Cullin 3, Cullin 4A, Cullin 4B, Cullin 5, Cullin 7 and Cullin 9). [8] Cullin proteins are an evolutionarily conserved family of proteins throughout yeast, plants and mammals. [9]

Protein function

Cullin 3 is a component of Cullin-RING E3 ubiquitin ligases complexes (CRLs) which are involved in protein ubiquitylation and represent a part of ubiquitin–proteasome system (UPS). Added ubiquitin moieties to the lysine residue by CRLs then target the protein for the proteasomal degradation. [10] Cullin-RING E3 ubiquitin ligases are involved in many cellular processes responsible for cell cycle regulation, stress response, protein trafficking, signal transduction, DNA replication, transcription, protein quality control, circadian clock and development. [11] [12]

Deletion of CUL3 gene in mice causes embryonic lethality. [13]

Cullin 3-RING E3 ubiquitin ligases

Cullin 3-RING complex consists of Cullin 3 protein, RING-box protein 1 (RBX1), which recruits the ubiquitin-conjugating enzyme (E2), and a Bric-a-brac/Tramtrack/Broad (BTB) protein, a substrate recognition subunit. Cullin 3 protein is a core scaffold protein coordinating other components of the CRL complex. [14] Cullin 3-RING complexes can also dimerise via their BTB domains which lead to creation of two substrate receptors and two catalytic RING domains. [15]

Activation of the complex is regulated by the attachment of the ubiquitin-like protein NEDD8 to a conserved Lys residue in the cullin-homology domain, the process called neddylation. [16] Deneddylation is conducted by an eight-subunit CSN complex which mediates the cleavage of the isopeptidic bond between NEDD8 and cullin protein. [17] Another protein that interacts with cullin is CAND1 which binds to deneddylated form of cullin protein and disrupts the interaction between cullin and other subunits of the complex leading to inhibition of the E3 ubiquitin ligase activity. [18] Therefore, dynamic neddylation and deneddylation of cullin is important for regulation of CRL complex activity. [19]

Clinical significance

Familial hyperkalemic hypertension

Mutations in CUL3 gene are associated with Familial hyperkalemic hypertension disease. CRL complex containing Cullin 3 controls the activity of Na+ Cl cotransporter (NCC) in the kidney by regulating the proteasomal degradation of With-no-lysine [K] kinases WNK1 and WNK4. It was shown that mutations in CUL3 gene lead to WNKs accumulation. [20] The abundance of these kinases leads to increased phosphorylation of NCC and its activation. As a consequence, Na+ reabsorption is increasing resulting in high blood pressure. [21]

Neurodevelopmental Disorders

Cullin 3 is heavily involved in the regulation of the central nervous system. Cullin 3 expression levels in the central nervous system change during fetal development, infancy, childhood and adulthood suggesting that the protein's expression plays a crucial role in brain development. The CUL3 gene has been identified as a risk gene for neurodevelopmental disorders particularly Autism Spectrum Disorder. [22]

Cancer

Deregulation of Cullin 3 expression level was observed in human cancers. It was shown that Cullin 3 is overexpressed in invasive cancers, and the protein expression level positively correlates with tumour stage. In breast cancer, the overexpression of Cullin 3 protein results in a decrease of Nrf2 protein level. This protein is a transcription factor regulating the expression of some detoxification and antioxidant enzymes. Another substrate of CRL complex is a candidate tumour suppressor protein RhoBTB2. [23]

Interactions

CUL3 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Ubiquitin</span> Regulatory protein found in most eukaryotic tissues

Ubiquitin is a small regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ubiquitously. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Four genes in the human genome code for ubiquitin: UBB, UBC, UBA52 and RPS27A.

<span class="mw-page-title-main">Ubiquitin ligase</span> Protein

A ubiquitin ligase is a protein that recruits an E2 ubiquitin-conjugating enzyme that has been loaded with ubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin from the E2 to the protein substrate. In simple and more general terms, the ligase enables movement of ubiquitin from a ubiquitin carrier to another thing by some mechanism. The ubiquitin, once it reaches its destination, ends up being attached by an isopeptide bond to a lysine residue, which is part of the target protein. E3 ligases interact with both the target protein and the E2 enzyme, and so impart substrate specificity to the E2. Commonly, E3s polyubiquitinate their substrate with Lys48-linked chains of ubiquitin, targeting the substrate for destruction by the proteasome. However, many other types of linkages are possible and alter a protein's activity, interactions, or localization. Ubiquitination by E3 ligases regulates diverse areas such as cell trafficking, DNA repair, and signaling and is of profound importance in cell biology. E3 ligases are also key players in cell cycle control, mediating the degradation of cyclins, as well as cyclin dependent kinase inhibitor proteins. The human genome encodes over 600 putative E3 ligases, allowing for tremendous diversity in substrates.

<span class="mw-page-title-main">SCF complex</span>

Skp, Cullin, F-box containing complex is a multi-protein E3 ubiquitin ligase complex that catalyzes the ubiquitination of proteins destined for 26S proteasomal degradation. Along with the anaphase-promoting complex, SCF has important roles in the ubiquitination of proteins involved in the cell cycle. The SCF complex also marks various other cellular proteins for destruction.

<span class="mw-page-title-main">NFE2L2</span> Human protein and coding gene

Nuclear factor erythroid 2-related factor 2 (NRF2), also known as nuclear factor erythroid-derived 2-like 2, is a transcription factor that in humans is encoded by the NFE2L2 gene. NRF2 is a basic leucine zipper (bZIP) protein that may regulate the expression of antioxidant proteins that protect against oxidative damage triggered by injury and inflammation, according to preliminary research. In vitro, NRF2 binds to antioxidant response elements (AREs) in the promoter regions of genes encoding cytoprotective proteins. NRF2 induces the expression of heme oxygenase 1 in vitro leading to an increase in phase II enzymes. NRF2 also inhibits the NLRP3 inflammasome.

<span class="mw-page-title-main">CUL1</span> Protein-coding gene in humans

Cullin 1, also known as CUL1, is a human protein and gene from cullin family. This protein plays an important role in protein degradation and protein ubiquitination.

<span class="mw-page-title-main">NEDD8</span>

NEDD8 is a protein that in humans is encoded by the NEDD8 gene. This ubiquitin-like (UBL) protein becomes covalently conjugated to a limited number of cellular proteins, in a process called NEDDylation similar to ubiquitination. Human NEDD8 shares 60% amino acid sequence identity to ubiquitin. The primary known substrates of NEDD8 modification are the cullin subunits of cullin-based E3 ubiquitin ligases, which are active only when NEDDylated. Their NEDDylation is critical for the recruitment of E2 to the ligase complex, thus facilitating ubiquitin conjugation. NEDD8 modification has therefore been implicated in cell cycle progression and cytoskeletal regulation.

<span class="mw-page-title-main">RBX1</span> Protein-coding gene in the species Homo sapiens

RING-box protein 1 is a protein that in humans is encoded by the RBX1 gene.

<span class="mw-page-title-main">CUL4A</span> Protein-coding gene in humans

Cullin-4A is a protein that in humans is encoded by the CUL4A gene. CUL4A belongs to the cullin family of ubiquitin ligase proteins and is highly homologous to the CUL4B protein. CUL4A regulates numerous key processes such as DNA repair, chromatin remodeling, spermatogenesis, haematopoiesis and the mitotic cell cycle. As a result, CUL4A has been implicated in several cancers and the pathogenesis of certain viruses including HIV. A component of a CUL4A complex, Cereblon, was discovered to be a major target of the teratogenic agent thalidomide.

<span class="mw-page-title-main">KEAP1</span> Protein-coding gene in the species Homo sapiens

Kelch-like ECH-associated protein 1 is a protein that in humans is encoded by the Keap1 gene.

<span class="mw-page-title-main">CUL5</span> Protein-coding gene in humans

Cullin-5 is a protein that in humans is encoded by the CUL5 gene.

<span class="mw-page-title-main">CUL2</span> Protein-coding gene in humans

Cullin-2 is a protein that in humans is encoded by the CUL2 gene.

<span class="mw-page-title-main">UBE2D1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-conjugating enzyme E2 D1 is a protein that in humans is encoded by the UBE2D1 gene.

<span class="mw-page-title-main">CUL4B</span> Protein-coding gene in humans

Cullin-4B is a protein that in humans is encoded by the CUL4B gene which is located on the X chromosome. CUL4B has high sequence similarity with CUL4A, with which it shares certain E3 ubiquitin ligase functions. CUL4B is largely expressed in the nucleus and regulates several key functions including: cell cycle progression, chromatin remodeling and neurological and placental development in mice. In humans, CUL4B has been implicated in X-linked intellectual disability and is frequently mutated in pancreatic adenocarcinomas and a small percentage of various lung cancers. Viruses such as HIV can also co-opt CUL4B-based complexes to promote viral pathogenesis. CUL4B complexes containing Cereblon are also targeted by the teratogenic drug thalidomide.

<span class="mw-page-title-main">RNF7</span> Protein-coding gene in the species Homo sapiens

RING-box protein 2 is a protein that in humans is encoded by the RNF7 gene.

<span class="mw-page-title-main">APPBP1</span> Protein-coding gene in the species Homo sapiens

NEDD8-activating enzyme E1 regulatory subunit is a protein that in humans is encoded by the NAE1 gene.

<span class="mw-page-title-main">CAND1</span> Protein-coding gene in humans

Cullin-associated NEDD8-dissociated protein 1 is a protein that in humans is encoded by the CAND1 gene.

<span class="mw-page-title-main">Cullin</span> Hydrophobic scaffold protein

Cullins are a family of hydrophobic scaffold proteins which provide support for ubiquitin ligases (E3). All eukaryotes appear to have cullins. They combine with RING proteins to form Cullin-RING ubiquitin ligases (CRLs) that are highly diverse and play a role in myriad cellular processes, most notably protein degradation by ubiquitination.

<span class="mw-page-title-main">S-phase kinase-associated protein 1</span> Protein-coding gene in the species Homo sapiens

S-phase kinase-associated protein 1 is an enzyme that in humans is encoded by the SKP1 gene.

<span class="mw-page-title-main">Kelch-like protein 3</span> Protein-coding gene in the species Homo sapiens

Kelch-like protein 3 is a protein in humans that is encoded by the KLHL3 gene. Alternative splicing results in multiple transcript variants encoding distinct isoforms.

Raymond Joseph Deshaies is an American biochemist and cell biologist. He is senior vice president of global research at Amgen and a visiting associate at the California Institute of Technology (Caltech). Prior to that, he was a professor of biology at Caltech and an investigator of the Howard Hughes Medical Institute. He is also the co-founder of the biotechnology companies Proteolix and Cleave Biosciences. His research focuses on mechanisms and regulation of protein homeostasis in eukaryotic cells, with a particular focus on how proteins are conjugated with ubiquitin and degraded by the proteasome.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000036257 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000004364 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kipreos ET, Lander LE, Wing JP, He WW, Hedgecock EM (June 1996). "cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family". Cell. 85 (6): 829–39. doi: 10.1016/S0092-8674(00)81267-2 . PMID   8681378. S2CID   15805562.
  6. Wimuttisuk W, Singer JD (March 2007). "The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer". Molecular Biology of the Cell. 18 (3): 899–909. doi:10.1091/mbc.E06-06-0542. PMC   1805106 . PMID   17192413.
  7. "Entrez Gene: CUL3 cullin 3".
  8. Cheng J, Guo J, Wang Z, North BJ, Tao K, Dai X, Wei W (January 2018). "Functional analysis of Cullin 3 E3 ligases in tumorigenesis". Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1869 (1): 11–28. doi:10.1016/j.bbcan.2017.11.001. PMC   7076836 . PMID   29128526.
  9. Sarikas A, Hartmann T, Pan Z (2011). "The cullin protein family". Genome Biol. 12 (4): 220. doi: 10.1186/gb-2011-12-4-220 . PMC   3218854 . PMID   21554755.
  10. Dubiel D, Bintig W, Kähne T, Dubiel W, Naumann M (August 2017). "Cul3 neddylation is crucial for gradual lipid droplet formation during adipogenesis". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1864 (8): 1405–1412. doi:10.1016/j.bbamcr.2017.05.009. PMID   28499918.
  11. Chen HY, Chen RH (2016). "Cullin 3 Ubiquitin Ligases in Cancer Biology: Functions and Therapeutic Implications". Frontiers in Oncology. 6: 113. doi: 10.3389/fonc.2016.00113 . PMC   4852199 . PMID   27200299.
  12. Petroski MD, Deshaies RJ (January 2005). "Function and regulation of cullin-RING ubiquitin ligases" (PDF). Nature Reviews. Molecular Cell Biology. 6 (1): 9–20. doi:10.1038/nrm1547. PMID   15688063. S2CID   24159190.
  13. Cheng J, Guo J, Wang Z, North BJ, Tao K, Dai X, Wei W (January 2018). "Functional analysis of Cullin 3 E3 ligases in tumorigenesis". Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1869 (1): 11–28. doi:10.1016/j.bbcan.2017.11.001. PMC   7076836 . PMID   29128526.
  14. Cheng J, Guo J, Wang Z, North BJ, Tao K, Dai X, Wei W (January 2018). "Functional analysis of Cullin 3 E3 ligases in tumorigenesis". Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1869 (1): 11–28. doi:10.1016/j.bbcan.2017.11.001. PMC   7076836 . PMID   29128526.
  15. Bulatov E, Ciulli A (May 2015). "Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation". The Biochemical Journal. 467 (3): 365–86. doi:10.1042/BJ20141450. PMC   4403949 . PMID   25886174.
  16. Petroski MD, Deshaies RJ (January 2005). "Function and regulation of cullin-RING ubiquitin ligases" (PDF). Nature Reviews. Molecular Cell Biology. 6 (1): 9–20. doi:10.1038/nrm1547. PMID   15688063. S2CID   24159190.
  17. Bulatov E, Ciulli A (May 2015). "Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation". The Biochemical Journal. 467 (3): 365–86. doi:10.1042/BJ20141450. PMC   4403949 . PMID   25886174.
  18. Chew EH, Hagen T (June 2007). "Substrate-mediated regulation of cullin neddylation". The Journal of Biological Chemistry. 282 (23): 17032–40. doi: 10.1074/jbc.M701153200 . PMID   17439941.
  19. Soucy TA, Smith PG, Rolfe M (June 2009). "Targeting NEDD8-activated cullin-RING ligases for the treatment of cancer". Clinical Cancer Research. 15 (12): 3912–6. doi:10.1158/1078-0432.CCR-09-0343. PMID   19509147. S2CID   17834925.
  20. Ferdaus MZ, McCormick JA (June 2016). "The CUL3/KLHL3-WNK-SPAK/OSR1 pathway as a target for antihypertensive therapy". American Journal of Physiology. Renal Physiology. 310 (11): F1389–96. doi:10.1152/ajprenal.00132.2016. PMC   4935775 . PMID   27076645.
  21. Ferdaus MZ, McCormick JA (May 2018). "Mechanisms and controversies in mutant Cul3-mediated familial hyperkalemic hypertension". American Journal of Physiology. Renal Physiology. 314 (5): F915–F920. doi:10.1152/ajprenal.00593.2017. PMC   6031903 . PMID   29361671.
  22. Lin P (2023). "Current trends of high-risk gene Cul3 in neurodevelopmental disorders". Front Psychiatry. 14. doi: 10.3389/fpsyt.2023.1215110 . PMC   10416632 . PMID   37575562.
  23. Haagenson KK, Tait L, Wang J, Shekhar MP, Polin L, Chen W, Wu GS (September 2012). "Cullin-3 protein expression levels correlate with breast cancer progression". Cancer Biology & Therapy. 13 (11): 1042–6. doi:10.4161/cbt.21046. PMC   3461811 . PMID   22825334.
  24. Min KW, Hwang JW, Lee JS, Park Y, Tamura TA, Yoon JB (May 2003). "TIP120A associates with cullins and modulates ubiquitin ligase activity". The Journal of Biological Chemistry. 278 (18): 15905–10. doi: 10.1074/jbc.M213070200 . PMID   12609982.
  25. Singer JD, Gurian-West M, Clurman B, Roberts JM (September 1999). "Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells". Genes & Development. 13 (18): 2375–87. doi:10.1101/gad.13.18.2375. PMC   317026 . PMID   10500095.
  26. Kim AY, Bommeljé CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, Ramanathan Y, Singh B (November 2008). "SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation". The Journal of Biological Chemistry. 283 (48): 33211–20. doi: 10.1074/jbc.M804440200 . PMC   2586271 . PMID   18826954.
  27. Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD (August 2008). "Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction". Toxicology and Applied Pharmacology. 230 (3): 383–9. doi:10.1016/j.taap.2008.03.003. PMC   2610481 . PMID   18417180.
  28. Rachakonda G, Xiong Y, Sekhar KR, Stamer SL, Liebler DC, Freeman ML (March 2008). "Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3". Chemical Research in Toxicology. 21 (3): 705–10. doi: 10.1021/tx700302s . PMID   18251510.
  29. Rondou P, Haegeman G, Vanhoenacker P, Van Craenenbroeck K (April 2008). "BTB Protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase". The Journal of Biological Chemistry. 283 (17): 11083–96. doi: 10.1074/jbc.M708473200 . PMC   2431063 . PMID   18303015.

Further reading