California Energy Code

Last updated

The California Energy Code (also titled Building Energy Efficiency Standards for Residential and Nonresidential Buildings), called simply Title 24 in industry, is the sixth section of the California Building Standards Code. The code was created by the California Building Standards Commission in 1978 in response to a legislative mandate to reduce California's energy consumption. These standards are updated periodically by the California Energy Commission. The code includes energy conservation standards applicable to most buildings throughout California. [1]

Contents

The code's purpose is to advance the state's energy policy, develop renewable energy sources and prepare for energy emergencies.[ citation needed ] A 2020 study found that the 1978 energy code successfully reduced energy consumption, and that the implementation of the policy passed a cost-benefit test. [2]

History

California was the first state to implement minimum energy efficiency standards in 1974. It was the first to establish an energy regulation commission – the California Energy Commission. These regulations and codes have been in effect since 1974. California has the lowest per capita energy consumption in the US. [3]

Structure

The three general parts, which include all the responsibilities and criteria of the standards, are:

All buildings must follow the mandatory requirements. Performance standards vary by the building location and type.

These parts are designed to accomplish the following:

Climate zones

Climate zones in California Climatezones.png
Climate zones in California

Standards vary based on climate zone. California is divided into 16 zones: [4]

  1. Arcata
  2. Santa Rosa
  3. Oakland
  4. San Jose
  5. Santa Maria
  6. Torrance
  7. San Diego
  8. Fullerton
  9. Burbank
  10. Riverside
  11. Red Bluff
  12. Sacramento
  13. Fresno
  14. Palmdale
  15. Palm Springs
  16. Blue Canyon

2019 Code

The 2019 California Energy Code became effective on January 1, 2020. [5] It focuses on such areas such as residential photovoltaic systems, thermal envelope standards and non-residential lighting requirements.

Homes built under this code are about 53% more energy efficient than those built to comply with the 2016 Energy Code. [6] This code provides a market for "smart" technologies. [7]

The 2019 Code added photovoltaic system requirements for low-rise residential buildings. Exceptions grant a reduction in size for photovoltaic systems. [8]

See also

Related Research Articles

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively or changing one's behavior to use less service. Energy conservation can be achieved through efficient energy use, which has a number of advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.

Energy demand management, also known as demand-side management (DSM) or demand-side response (DSR), is the modification of consumer demand for energy through various methods such as financial incentives and behavioral change through education.

<span class="mw-page-title-main">Low-energy house</span> House designed for reduced energy use

A low-energy house is characterized by an energy-efficient design and technical features which enable it to provide high living standards and comfort with low energy consumption and carbon emissions. Traditional heating and active cooling systems are absent, or their use is secondary. Low-energy buildings may be viewed as examples of sustainable architecture. Low-energy houses often have active and passive solar building design and components, which reduce the house's energy consumption and minimally impact the resident's lifestyle. Throughout the world, companies and non-profit organizations provide guidelines and issue certifications to guarantee the energy performance of buildings and their processes and materials. Certifications include passive house, BBC - Bâtiment Basse Consommation - Effinergie (France), zero-carbon house (UK), and Minergie (Switzerland).

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response, a type of energy demand management, seeks to adjust in real-time the demand for power instead of adjusting the supply.

<span class="mw-page-title-main">Negawatt market</span>

A negawatt market is a proposed idea of implementation of the demand response that uses an energy market where the commodity traded is a negawatt-hour, a unit of energy saved as a direct result of energy conservation measures.

<span class="mw-page-title-main">Zero-energy building</span> Energy efficiency standard for buildings

A Zero-Energy Building (ZEB), also known as a Net Zero-Energy (NZE) building, is a building with net zero energy consumption, meaning the total amount of energy used by the building on an annual basis is equal to the amount of renewable energy created on the site or in other definitions by renewable energy sources offsite, using technology such as heat pumps, high efficiency windows and insulation, and solar panels.

<span class="mw-page-title-main">Efficient energy use</span> Energy efficiency

Efficient energy use, sometimes simply called energy efficiency, is the process of reducing the amount of energy required to provide products and services. For example, insulating a building allows it to use less heating and cooling energy to achieve and maintain a thermal comfort. Installing light-emitting diode bulbs, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Improvements in energy efficiency are generally achieved by adopting a more efficient technology or production process or by application of commonly accepted methods to reduce energy losses.

A feed-in tariff is a policy mechanism designed to accelerate investment in renewable energy technologies by offering long-term contracts to renewable energy producers. This means promising renewable energy producers an above-market price and providing price certainty and long-term contracts that help finance renewable energy investments. Typically, FITs award different prices to different sources of renewable energy in order to encourage development of one technology over another. For example, technologies such as wind power and solar PV are awarded a higher price per kWh than tidal power. FITs often include a "degression": a gradual decrease of the price or tariff in order to follow and encourage technological cost reductions.

<span class="mw-page-title-main">Smart grid</span> Type of electrical grid

A smart grid is an electrical grid which includes a variety of operation and energy measures including:

A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.

<span class="mw-page-title-main">Solar power in California</span>

Solar power has been growing rapidly in the U.S. state of California because of high insolation, community support, declining solar costs, and a renewable portfolio standard which requires that 60% of California's electricity come from renewable resources by 2030, with 100% by 2045. Much of this is expected to come from solar power via photovoltaic facilities or concentrated solar power facilities.

<span class="mw-page-title-main">Energy policy of Malaysia</span>

The energy policy of Malaysia is determined by the Malaysian Government, which address issues of energy production, distribution, and consumption. The Department of Electricity and Gas Supply acts as the regulator while other players in the energy sector include energy supply and service companies, research and development institutions and consumers. Government-linked companies Petronas and Tenaga Nasional Berhad are major players in Malaysia's energy sector.

<span class="mw-page-title-main">United States building energy codes</span>

United States building energy codes are a subset of building codes that set minimum requirements for energy-efficient design and construction for new and renovated buildings. The intent of these energy codes is to moderate and reduce energy use and emissions throughout the lifetime of a building. Energy code provisions may include various aspects of building design and construction, such as: HVAC systems, building envelope, electrical, and lighting systems. There are building energy codes for both commercial and residential buildings. However, just as the United States does not have a national building code, it also does not have a national building energy code; rather, state, and local governments choose to adopt—and potentially revise—national model energy codes and standards. Consequently, building energy codes, and building codes in general, vary between states and jurisdictions.

ANSI/ASHRAE/IES Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings is an American National Standards Institute (ANSI) standard published by ASHRAE and jointly sponsored by the Illuminating Engineering Society (IES) that provides minimum requirements for energy efficient designs for buildings except for low-rise residential buildings. The original standard, ASHRAE 90, was published in 1975. There have been multiple editions to it since. In 1999 the ASHRAE Board of Directors voted to place the standard on continuous maintenance, based on rapid changes in energy technology and energy prices. This allows it to be updated multiple times in a year. The standard was renamed ASHRAE 90.1 in 2001. It has since been updated in 2004, 2007, 2010, 2013, 2016, and 2019 to reflect newer and more efficient technologies.

The term Smart Grid describes a next-generation electric power system, that is classified by the increased use of communication and information technology in the generation, delivery, and consumption of electrical energy. For individual consumers, smart grid technology offers more control over electricity consumption. Typically, the goal is overall greater energy efficiency.

<span class="mw-page-title-main">Grid-connected photovoltaic power system</span>

A grid-connected photovoltaic system, or grid-connected PV system is an electricity generating solar PV power system that is connected to the utility grid. A grid-connected PV system consists of solar panels, one or several inverters, a power conditioning unit and grid connection equipment. They range from small residential and commercial rooftop systems to large utility-scale solar power stations. When conditions are right, the grid-connected PV system supplies the excess power, beyond consumption by the connected load, to the utility grid.

Sustainable refurbishment describes working on existing buildings to improve their environmental performance using sustainable methods and materials. A refurbishment or retrofit is defined as: “any work to a building over and above maintenance to change its capacity, function or performance’ in other words, any intervention to adjust, reuse, or upgrade a building to suit new conditions or requirements” [7]. Refurbishment can be done to a part of a building, an entire building, or a campus [5]. Sustainable refurbishment takes this a step further to modify the existing building to perform better in terms of its environmental impact and its occupants' environment.

The House Energy Rating (HER) or House Energy Rating Scheme (HERS) are worldwide standard measures of comparison by which one can evaluate the energy efficiency of a new or an existing building. The comparison is generally done for energy requirements for heating and cooling of indoor space. The energy is the main criterion considered by any international building energy rating scheme but there are some other important factors such as production of greenhouse gases emission, indoor environment quality, cost efficiency and thermal comfort, which are considered by some schemes. Basically, the energy rating of a residential building provides detailed information on the energy consumption and the relative energy efficiency of the building. Hence, HERs inform consumers about the relative energy efficiency of homes and encourage them to use this information in making their house purchase decision.

Energy efficiency, or efficient energy use, describes an optimization of the power requirements and environmental impacts of energy systems. This includes actions taken by a governing body to decrease power use over an entire power grid, or actions taken by individuals to make their energy use in their house less wasteful. It is also one of the easiest and most cost effective ways to fight climate change and air pollution.

References

  1. "2016 California Energy Code, Title 24, Part 6". Shop.ICCSafe.org. Retrieved September 8, 2018.
  2. Novan, Kevin; Smith, Aaron; Zhou, Tianxia (September 24, 2020). "Residential Building Codes Do Save Energy: Evidence from Hourly Smart-Meter Data". The Review of Economics and Statistics. 104 (3): 483–500. doi: 10.1162/rest_a_00967 . ISSN   0034-6535.
  3. "Power Hungry". Forbes .
  4. "2022 Reference Appendices" (PDF). Energy.ca.gov. California Energy Commission. August 2022. p. 33. Retrieved January 9, 2023.
  5. 2019 Building Energy Efficiency Standards, Frequently Asked Questions, California Energy Commission, March 2018
  6. "The California Energy Commission | EFFICIENCY DIVISION 2019: Building Energy Efficiency Standards" (PDF). California Energy Commission. March 2018. Retrieved April 25, 2019.
  7. "California Energy Code 2019 – Energy commission adopts standards requiring solar systems for new homes, First in Nation". California Energy Commission.
  8. "Blueprint California Energy Commission-Issue 123" (PDF). California Energy Commission.