Calopteron discrepans

Last updated

Contents

Calopteron discrepans
Calopteron discrepans.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Coleoptera
Family: Lycidae
Genus: Calopteron
Species:
C. discrepans
Binomial name
Calopteron discrepans
(Newman, 1838)

Calopteron discrepans, the banded net-winged beetle, is a species of net-winged beetle in the family Lycidae. It is found in North America. [1] [2] [3]

Distribution

The banded net-winged beetle, Calopteron discrepans (Newman), is distributed across the eastern United States, ranging from New England south to Florida and west to Oklahoma and Kansas. [4] Recently, some banded net-winged beetles have been found as far north as Manitoba and Quebec, extending the area of their geographical range. [5]

Physical description

Calopteron beetles exhibit subtle variations in appearance, with three distinct species identified in North America and Northern Mexico. Among these species, Calopteron discrepans and Calopteron reticulatum are notably similar in their external morphology. Their appearance is nearly identical and characterized by a degree of variability, making differentiation between the two species challenging. However, subtle distinctions can be observed primarily based on the coloration of the metasternum and the second antennal segment, providing key features necessary for species identification.

Life cycle

Adults

These beetles typically range in length from approximately 10 to 15 mm, with females being larger than males. The elytra display elevated lengthwise ridges and cross ridges, a common feature among lycids, and are predominantly orange with distinct black banding patterns. The median and terminal black bands on the elytra contribute to their striking appearance. The pronotum is black on the top with small strips of fulvous along the sides. The sutural extension of the median black band is expanded basally and is widest at the scutellum and forms a right angle with the anterior part of the band. The ventral surface of the aedeagus has a cap which protects the seminal orifice distally. [6] Notably, the banding patterns of C. discrepans closely resemble those of the closely-related species Calopteron reticulatum. Another distinction is that the metasternum and second antennal joint are totally black in C. discrepans whereas the metasternum of C. reticulatum is more or less reddish-brown antero-medially. Furthermore, the second antennal segment is fulvous or brown in C. discrepans. Despite these subtle differences, distinguishing between these two species can pose challenges, especially for those unfamiliar with their intricate characteristics. Moreover, there is a third species, Calopteron terminale, with which C. discrepans is often confused. C. terminale typically lacks the median black band on the elytra, a distinguishing feature often seen in C. discrepans. Additionally, when viewed from the side, the elytra of C. terminale exhibit a wavy appearance with a small depression anterior to the apical band. If a median band is present in C. terminale, it is not produced along the suture toward the bases of the elytra, further adding to the complexity of species differentiation. [5]

Larvae

The larvae of Calopteron discrepans are characterized by a dark black coloration with burnt-orange patches, contributing to their distinct appearance within their habitat. This distinct coloration aids in their camouflage and provides protection against potential predators as they navigate their environment in search of prey or suitable habitat for development.

Pupa

During the pupal stage, Calopteron larvae aggregate in large numbers, forming shingled masses containing hundreds of pupae. This notable behavior, observed in Calopteron species, plays a crucial role in their ecological dynamics and potential adaptive strategies. The reasons behind this aggregative behavior are not yet fully understood, but it is believed that factors such as environmental cues or aggregation pheromones may play a role. These aggregations provide a communal defense mechanism against predators and environmental stressors, enhancing the survival rate of the developing pupae. Additionally, the formation of these aggregations likely serves as a strategy to optimize resource utilization and increase the efficiency of pupal development, ensuring the successful transition to adulthood. [7]

Habitat

Calopteron larvae are primarily found inhabiting various microhabitats within their preferred ecosystems, which are primarily moist woods. These larvae predominantly reside in environments such as rotten logs, under loose bark, soil, or leaf litter. These habitats provide the best conditions for their development and sustenance, offering ample food and suitable substrate for pupation. [4]

Diet

The diet of Calopteron larvae is diverse, with reports indicating varied feeding habits. While some authors suggest that they are predacious, others suggest that they primarily feed on myxomycetes, fungi, or fermenting plant juices. This dietary versatility may contribute to their ecological success within their respective habitats. [6]

The diet of Calopteron larvae is diverse, with reports indicating varied feeding habits. While some authors suggest that they are predacious, others suggest that they primarily feed on myxomycetes, fungi, or fermenting plant juices. This dietary versatility may contribute to their ecological success within their respective habitats and may allow them to exploit a wide range of food resources and adapt to changing environmental conditions. [7]

Social Behavior

Pupation

Calopteron larvae exhibit interesting behavior during the pupation stage.  This stage occurs within the last instar larval exuviae. The larvae of Calopteron discrepans form large aggregations during pupation. Some of these aggregations were seen to contain 100s of pupae. This behavior has also been noticed in other species, such as Calopteron terminale, Calopteron reticulatum, and Calopteron tropicum. However, in these 3 other species, the aggregation was in much smaller numbers. This behavior has been documented in different environmental settings, including laboratory observations and field studies. The reasons behind this aggregative behavior are not yet fully understood, but it is believed that factors such as environmental cues or aggregation pheromones may play a role. It is speculated that aggregation may serve other purposes, such as defense against predators, regulation of microclimatic conditions, and facilitation of mating opportunities. The communal nature of these aggregations may also confer social benefits, such as information exchange and resource sharing, which would contribute to the overall fitness and resilience of Calopteron populations in their natural habitats. [7]

Mating

Although a few mating pairs were observed near the aggregations, mating activity was not directly observed on the aggregated mass of pupae, nor was there clear evidence of male attendance to the pupae. In fact, the majority of resting adults observed on surrounding vegetation were not engaged in copulation. Consequently, it appears that male-female pairing is not a primary function of the pupal aggregations. However, further research is needed to fully understand the reproductive behavior and mating strategies of Calopteron species, including the role of pupal aggregations in facilitating mating opportunities and enhancing reproductive success. [7]

Defense

Aposematic coloration

The integument of Calopteron larvae displays bright, contrasting coloration, suggesting aposematic coloration. This coloration may serve as a warning to predators, indicating that the larvae are distasteful or harmful. Pupation occurs within the last instar larval exoskeleton, which retains the bright larval coloration. This likely provides shelter and additional aposematic benefits to the pupa, This likely provides shelter and additional aposematic benefits to the pupa, enhancing its overall survival and protection against potential threats in its environment. [5]

Chemical Defense

Calopteron beetles, particularly Calopteron reticulatum, have been found to contain defensive chemicals in their bodies. These include pyrazines, which contribute to the repugnant scent of the beetles, and lycidic acid along with other fatty acids that may render them distasteful to predators. The wings of these beetles have brittle ridges that rupture easily, releasing defensive chemicals. The fluid passing through the centers of these’s beetles ridges is noxious. When they feel threatened or are under attack, they release a noxious fluid from there leg joints, a process called reflex-bleeding. The striking colors of this beetle and the use of chemicals in their body  serves as a defensive mechanism. [5]

Egg stage and Oviposition

Not much is known of the egg stage and oviposition site of Calopteron species. However, the larvae of net-winged beetles, including Calopteron discrepans, are known to crawl under the bark of trees, serving as predators of small arthropods and consumers of rotting wood. This dual diet contributes to ecosystem services by aiding in the decomposition of trees, facilitating the carbon cycle. Upon reaching adulthood, net-winged beetle larvae congregate in large numbers on the surface of trees to pupate, a behavior believed to confer protective benefits through aposematic coloration inherited from the larvae stage. [8]

Mutualistic Relationships

C. discrepans is known to engage in mutualistic relationships with various organisms, especially fungi and plants. One of the notable mutualistic interactions involves its association with fungi for larval development which allows for successful development within decaying wood substrates. [9] The larvae aid in the dispersal of fungal spores while benefiting from the nutrient-rich environment provided by the fungi.

Additionally, C. discrepans exhibits mutualistic relationships with certain plant species. Adult beetles of C. discrepans are important pollinators for several plant species in their habitat. The beetles aid in pollination while obtaining nectar or pollen as a food source.

Interactions with Humans

Net-winged beetle larvae play a crucial role in ecosystem dynamics as both predators and decomposers. Under the protective cover of bark, they actively hunt small arthropods, contributing to natural pest control within their habitats. Additionally, these larvae consume rotting wood, participating in the decomposition process and facilitating nutrient cycling in forest ecosystems. [6]

Related Research Articles

<span class="mw-page-title-main">Beetle</span> Order of insects

Beetles are insects that form the order Coleoptera, in the superorder Holometabola. Their front pair of wings are hardened into wing-cases, elytra, distinguishing them from most other insects. The Coleoptera, with about 400,000 described species, is the largest of all orders, constituting almost 40% of described insects and 25% of all known animal species; new species are discovered frequently, with estimates suggesting that there are between 0.9 and 2.1 million total species. Found in almost every habitat except the sea and the polar regions, they interact with their ecosystems in several ways: beetles often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are serious agricultural pests, such as the Colorado potato beetle, while others such as Coccinellidae eat aphids, scale insects, thrips, and other plant-sucking insects that damage crops.

<span class="mw-page-title-main">Histeridae</span> Family of beetles

Histeridae is a family of beetles commonly known as clown beetles or hister beetles. This very diverse group of beetles contains 3,900 species found worldwide. They can be easily identified by their shortened elytra that leaves two of the seven tergites exposed, and their geniculate (elbowed) antennae with clubbed ends. These predatory feeders are most active at night and will fake death if they feel threatened. This family of beetles will occupy almost any kind of niche throughout the world. Hister beetles have proved useful during forensic investigations to help in time of death estimation. Also, certain species are used in the control of livestock pests that infest dung and to control houseflies. Because they are predacious and will even eat other hister beetles, they must be isolated when collected.

<span class="mw-page-title-main">Elateroidea</span> Superfamily of beetles

The Elateroidea are a large superfamily of beetles. It contains the familiar click beetles, fireflies, and soldier beetles and their relatives. It consists of about 25,000 species.

<i>Dynastes tityus</i> Species of beetle

Dynastes tityus, the eastern Hercules beetle, is a species of rhinoceros beetle native to the Eastern United States. The adult's elytra are green, gray or tan, with black markings, and the whole animal, including the male's horns, may reach 60 mm (2.4 in) in length. The larvae feed on decaying wood from various trees.

<span class="mw-page-title-main">Japanese rhinoceros beetle</span> Species of beetle

Allomyrina dichotoma, also known as Japanese rhinoceros beetle, Japanese horned beetle, or kabutomushi, is a species of rhinoceros beetle. They are commonly found in continental Asia in countries such as China, the Korean peninsula, Japan, and Taiwan. In these areas, this species of beetle is often found in broad-leaved forests with tropical or sub-tropical climates. This beetle is well known for the prominent cephalic horn found on males. Male Japanese rhinoceros beetles will use this horn to fight other males for territory and access to female mating partners. Upon contact, males will attempt to flip each other onto their backs or off of their feeding tree. In response to selective pressures, smaller male A. dichotoma have adapted a "sneak-like behavior". These smaller beetles will attempt to avoid physical confrontation with larger males and try to mate with females.

<span class="mw-page-title-main">Lycidae</span> Family of beetles

The Lycidae are a family in the beetle order Coleoptera, members of which are commonly called net-winged beetles. These beetles are cosmopolitan, being found in Nearctic, Palearctic, Neotropical, Afrotropical, Oriental, and Australian ecoregions.

<span class="mw-page-title-main">Histeroidea</span> Superfamily of beetles

Histeroidea is a superfamily of beetles in the infraorder Staphyliniformia.

<span class="mw-page-title-main">Wharf borer</span> Species of beetle

The wharf borer, Nacerdes melanura, belongs to the insect order Coleoptera, the beetles. They belong to the family Oedemeridae, known as false blister beetles. Wharf borers are present in all the states of the USA except for Florida. It takes about a year to develop from an egg to an adult. The name 'wharf borer' comes from the larval stage of this insect, which often lingers on pilings and timbers of wharves, especially along coastal areas. The adult beetles are identifiable via a black band across the end of both elytra. In addition, wharf borers are distinct from other members of the family Oedemeridae due to the presence of a single spur on the tibia of the forelegs and the distance between both eyes. The female beetle oviposits eggs on rotten wood, on which the larvae hatch, burrow, then feed. Adults do not eat and depend on stored energy reserves accumulated as a larva. They are considered a pest because they damage wood used in building infrastructures.

<span class="mw-page-title-main">American carrion beetle</span> Species of beetle

The American carrion beetle is a North American beetle of the family Silphidae. It lays its eggs in, and its larvae consume, raw flesh and fungi. The larvae and adults also consume fly larvae and the larvae of other carrion beetles that compete for the same food sources as its larvae.

<i>Coleomegilla maculata</i> Species of beetle

Coleomegilla maculata, commonly known as the spotted lady beetle, pink spotted lady beetle or twelve-spotted lady beetle, is a large coccinellid beetle native to North America. The adults and larvae feed primarily on aphids and the species has been used as a biological control agent. Based on name connotation and to avoid confusion with other species also called "spotted ladybeetle", spotted pink ladybeetle is probably the most appropriate common name for this species.

<i>Neoclytus caprea</i> Species of beetle

Neoclytus caprea is a species of beetle in the family Cerambycidae. It was described by Say in 1824. It feeds on sapwood of ash, sometimes oak, and hickory. It often emerges indoors from firewood; logs may become infested within 20 days of felling during summer. The banded ash borer experiences sexual dimorphism, as the female of the species is considerable larger in size than the male and has yellow and black elytra coloring rather than white and black of the male of the species. They produce one generation a year.

<i>Pyropterus nigroruber</i> Species of beetle

Pyropterus nigroruber is a species of net-winged beetles belonging to the family Lycidae.

<i>Pterostichus melanarius</i> Species of ground beetle

Pterostichus melanarius, the Rain Beetle, is a type of carabid of the genus Coleoptera. It is native to Europe but is increasingly found in North America after being introduced to the region in the 1920s. It is a predatory beetle that eats invertebrate pests, which makes it a valuable pest control agent in agricultural settings. Additionally, the beetle has wing dimorphism which has contributed to its increasing distribution across North America.

<i>Anisodactylus binotatus</i> Species of beetle

Anisodactylus binotatus is a species of ground beetle native to Europe. It was discovered as being introduced to Canterbury, New Zealand in 1938. Anisodactylus binotatus is a species of Carabidae, also known as the ground beetle family. Although this species of beetle has no official recorded common names, literature from England refers to it as the common shortspur beetle.

<i>Calopteron</i> Genus of beetles

Calopteron is a genus of net-winged beetles in the family Lycidae.

<i>Habroscelimorpha dorsalis</i> Species of beetle

Habroscelimorpha dorsalis, commonly known as the eastern beach tiger beetle, is a species of flashy tiger beetle in the family Cicindelidae. It is found in Central America and North America.

<i>Calopteron reticulatum</i> Species of beetle

Calopteron reticulatum, also known as the reticulated net-winged beetle, is a species of net-winged beetle in the family Lycidae. It is also known as the banded net-winged beetle, though that name is also used for the closely related and similarly banded Calopteron discrepans. It is found in North America. Adults are active during the day, and lay their eggs on dead/decaying trees. The species also pupates in dead trees. Larva hunt in leaf litter, eating other small arthropods.

<i>Calopteron terminale</i> Species of beetle

Calopteron terminale, the end band net-wing, is a species of net-winged beetle in the family Lycidae. It is found in North America.

<i>Dicladispa armigera</i> Species of beetle

Dicladispa armigera is a species of leaf beetle from Southeast Asia, often known by its common name: the "rice hispa". These beetles are a well known invasive pest, and are responsible for significant crop damage across many countries. The male to female ratio is between 1:1.26 and 1:1.46.

<i>Rivacindela hudsoni</i> Species of beetle

Rivacindela hudsoni is an Australian species of the family Cicindelinae or "tiger beetle" and is the fastest running insect. The genus Rivacindela is contentiously treated as a subgenus of the broader Cicindela and are typically found in salty habitats such as dry salt lakes and salt streams. The species was discovered in South Australia and described in 1997, with an adult form of approximately 20–21mm in length and a running speed of 2.49m/s, or 120 body lengths per second.

References

  1. "Calopteron discrepans Report". Integrated Taxonomic Information System. Retrieved 2019-09-22.
  2. "Calopteron discrepans". GBIF. Retrieved 2019-09-22.
  3. 1 2 Hall, Donald (July 2007). "Banded Net-Winged Beetle, Calopteron discrepans (Newman) (Insecta: Coleoptera: Lycidae)1". University of Florida IFAS Extension. Retrieved April 5, 2024.
  4. 1 2 3 4 "Banded net-winged beetle - Calopteron discrepans (Newman)". entnemdept.ufl.edu. Retrieved 2024-04-05.
  5. 1 2 3 Green, John Wagener (1952). "The Lycidae of the United States and Canada. IV. The Tribe Calopterini (Coleoptera)". Transactions of the American Entomological Society. 78 (1): 1–19. ISSN   0002-8320. JSTOR   25077637.
  6. 1 2 3 4 Hall, Donald W.; Branham, Marc A. (March 2008). "Aggregation of Calopteron discrepans (Coleoptera: Lycidae) Larvae Prior to Pupation". Florida Entomologist. 91 (1): 124–125. doi: 10.1653/0015-4040(2008)091[0124:AOCDCL]2.0.CO;2 . ISSN   0015-4040.
  7. Foye, Shane (2020-11-16). "Netwing beetles: Beautiful and toxic to predators -". The Adirondack Almanack. Retrieved 2024-04-05.
  8. Masek, Michal; Motyka, Michal; Kusy, Dominik; Bocek, Matej; Li, Yun; Bocak, Ladislav (December 2018). "Molecular Phylogeny, Diversity and Zoogeography of Net-Winged Beetles (Coleoptera: Lycidae)". Insects. 9 (4): 154. doi: 10.3390/insects9040154 . ISSN   2075-4450. PMID   30388727.

Further reading