Capacitor plague

Last updated

Failed aluminium electrolytic capacitors with open vents in the top of the can, and visible dried electrolyte residue (reddish-brown color) Al-Elko-bad-caps-Wiki-07-02-17.jpg
Failed aluminium electrolytic capacitors with open vents in the top of the can, and visible dried electrolyte residue (reddish-brown color)

The capacitor plague was a problem related to a higher-than-expected failure rate of non-solid aluminium electrolytic capacitors between 1999 and 2007, especially those from some Taiwanese manufacturers, [1] [2] due to faulty electrolyte composition that caused corrosion accompanied by gas generation; this often resulted in rupturing of the case of the capacitor from the build-up of pressure.

Contents

High failure rates occurred in many well-known brands of electronics, and were particularly evident in motherboards, video cards, and power supplies of personal computers.

A 2003 article in The Independent claimed that the cause of the faulty capacitors was due to a mis-copied formula. In 2001, a scientist working in the Rubycon Corporation in Japan stole a mis-copied formula for capacitors' electrolytes. He then took the faulty formula to the Luminous Town Electric company in China, where he had previously been employed. In the same year, the scientist's staff left China, stealing again the mis-copied formula and moving to Taiwan, where they created their own company, producing capacitors and propagating even more of this faulty formula of capacitor electrolytes. [3]

History

First announcements

The first flawed capacitors linked to Taiwanese raw material problems were reported by the specialist magazine Passive Component Industry in September 2002. [1] Shortly thereafter, two mainstream electronics journals reported the discovery of widespread prematurely failing capacitors, from Taiwanese manufacturers, in motherboards. [4] [5]

These publications informed engineers and other technically interested specialists, but the issue did not receive widespread public exposure until Carey Holzman published his experiences about "leaking capacitors" in the overclocking performance community. [6]

Public attention

Results of fire on a printed circuit board, caused by leaked electrolyte which short-circuited conductors carrying power Brand auf Platine.jpg
Results of fire on a printed circuit board, caused by leaked electrolyte which short-circuited conductors carrying power

The news from the Holzman publication spread quickly on the Internet and in newspapers, partly due to the spectacular images of the failures – bulging or burst capacitors, expelled sealing rubber and leaking electrolyte on countless circuit boards. Many PC users were affected, and caused an avalanche of reports and comments on thousands of blogs and other web communities. [5] [7] [8]

The quick spread of the news also resulted in many misinformed users and blogs posting pictures of capacitors that had failed due to reasons other than faulty electrolyte. [9]

Prevalence

Most of the affected capacitors were produced from 1999 to 2003 and failed between 2002 and 2005. Problems with capacitors produced with an incorrectly formulated electrolyte have affected equipment manufactured up to at least 2007. [2]

Major vendors of motherboards such as Abit, [10] IBM, [1] Dell, [11] Apple, HP, and Intel [12] were affected by capacitors with faulty electrolytes.

In 2005, Dell spent some US$420 million replacing motherboards outright and on the logistics of determining whether a system was in need of replacement. [13] [14]

Many other equipment manufacturers unknowingly assembled and sold boards with faulty capacitors, and as a result the effect of the capacitor plague could be seen in all kinds of devices worldwide.

Because not all manufacturers had offered recalls or repairs, do it yourself repair instructions were written and published on the Internet. [15]

Responsibility

In the November/December 2002 issue of Passive Component Industry, following its initial story about defective electrolyte, reported that some large Taiwanese manufacturers of electrolytic capacitors were denying responsibility for defective products. [16]

While industrial customers confirmed the failures, they were not able to trace the source of the faulty components. The defective capacitors were marked with previously unknown brands such as "Tayeh", "Choyo", or "Chhsi". [17] The marks were not easily linked to familiar companies or product brands.

The motherboard manufacturer ABIT Computer Corp. was the only affected manufacturer that publicly admitted to defective capacitors obtained from Taiwan capacitor makers being used in its products. [16] However, the company would not reveal the name of the capacitor maker that supplied the faulty products.

Symptoms

Common characteristics

The non-solid aluminium electrolytic capacitors with improperly formulated electrolyte mostly belonged to the so-called "low equivalent series resistance (ESR)", "low impedance", or "high ripple current" e-cap series. The advantage of e-caps using an electrolyte composed of 70% water or more is, in particular, a low ESR, which allows a higher ripple current, and decreased production costs, water being the least costly material in a capacitor. [18]

Comparison of aluminium e-caps with different non-solid electrolytes
ElectrolyteManufacturer
series, type
Dimensions
D × L
(mm)
Max. ESR
at 100 kHz, 20 °C
(mΩ)
Max. ripple current
at 85/105 °C
(mA)
Non-solid
organic electrolyte
Vishay
036 RSP, 100 µF, 10 V
5 × 111000160
Non-solid, ethylene-glycol,
boric-acid (borax) electrolyte
NCC
SMQ, 100 µF, 10 V
5 × 11900180
Non-solid
water-based electrolyte
Rubycon
ZL, 100 µF, 10 V
5 × 11300250

Premature failure

All electrolytic capacitors with non-solid electrolyte age over time, due to evaporation of the electrolyte. The capacitance usually decreases and the ESR usually increases. The normal lifespan of a non-solid electrolytic capacitor of consumer quality, typically rated at 2000 h/85 °C and operating at 40 °C, is roughly 6 years. It can be more than 10 years for a 1000 h/105 °C capacitor operating at 40 °C. Electrolytic capacitors that operate at a lower temperature can have a considerably longer lifespan.

The capacitance should normally degrade to as low as 70% of the rated value, and the ESR increase to twice the rated value, over the normal life span of the component, before it should be considered as a "degradation failure". [19] [20] The life of an electrolytic capacitor with defective electrolyte can be as little as two years. The capacitor may fail prematurely after reaching approximately 30% to 50% of its expected lifetime.

Electrical symptoms

The electrical characteristics of a failed electrolytic capacitor with an open vent are the following:

Electrolytic capacitors with an open vent are in the process of drying out, regardless of whether they have good or bad electrolyte. They always show low capacitance values and very high ohmic ESR values. Dry e-caps are therefore electrically useless.

E-caps can fail without any visible symptoms. Since the electrical characteristics of electrolytic capacitors are the reason for their use, these parameters must be tested with instruments to definitively decide if the devices have failed. But even if the electrical parameters are out of their specifications, the assignment of failure to the electrolyte problem is not a certainty.

Non-solid aluminium electrolytic capacitors without visible symptoms, which have improperly formulated electrolyte, typically show two electrical symptoms:

Visible symptoms

Closeup of a broken electrolytic capacitor vent and dried electrolyte residue Blown up electrolytic capacitor.jpg
Closeup of a broken electrolytic capacitor vent and dried electrolyte residue

When examining a failed electronic device, the failed capacitors can easily be recognized by clearly visible symptoms that include the following: [23]

Investigation

Implications of industrial espionage

Industrial espionage was implicated in the capacitor plague, in connection with the theft of an electrolyte formula. A materials scientist working for Rubycon in Japan left the company, taking the secret water-based electrolyte formula for Rubycon's ZA and ZL series capacitors, and began working for a Chinese company. The scientist then developed a copy of this electrolyte. Then, some staff members who defected from the Chinese company copied an incomplete version of the formula and began to market it to many of the aluminium electrolytic manufacturers in Taiwan, undercutting the prices of the Japanese manufacturers. [1] [25] This incomplete electrolyte lacked important proprietary ingredients which were essential to the long-term stability of the capacitors [5] [23] and was unstable when packaged in a finished aluminium capacitor. This faulty electrolyte allowed the unimpeded formation of hydroxide and produced hydrogen gas. [26] [27]

There are no public court proceedings related to the alleged theft, as Rubycon's complete electrolyte formula remained secure. However, independent laboratory analysis of defective capacitors has shown that many of the premature failures appear to be associated with high water content and missing inhibitors in the electrolyte, as described below. [26]

Incomplete electrolyte formula

Unimpeded formation of hydroxide (hydration) and associated hydrogen gas production, occurring during "capacitor plague" or "bad capacitors" incidents involving the failure of large numbers of aluminium electrolytic capacitors, has been demonstrated by two researchers at the Center for Advanced Life Cycle Engineering of the University of Maryland who analyzed the failed capacitors. [26]

The two scientists initially determined, by ion chromatography and mass spectrometry, that there was hydrogen gas present in failed capacitors, leading to bulging of the capacitor's case or bursting of the vent. Thus it was proved that the oxidation takes place in accordance with the first step of aluminium oxide formation.

Because it has been customary in electrolytic capacitors to bind the excess hydrogen by using reducing or depolarizing compounds, such as aromatic nitrogen compounds or amines, to relieve the resulting pressure, the researchers then searched for compounds of this type. Although the analysis methods were very sensitive in detecting such pressure-relieving compounds, no traces of such agents were found within the failed capacitors.

In capacitors in which the internal pressure build-up was so great that the capacitor case was already bulging but the vent had not opened yet, the pH value of the electrolyte could be measured. The electrolyte of the faulty Taiwanese capacitors was alkaline, with a pH of between 7 and 8. Good comparable Japanese capacitors had an electrolyte that was acidic, with a pH of around 4. As it is known that aluminium can be dissolved by alkaline liquids, but not that which is mildly acidic, an energy dispersive X-ray spectroscopy (EDX or EDS) fingerprint analysis of the electrolyte of the faulty capacitors was made, which detected dissolved aluminium in the electrolyte.

To protect the metallic aluminium against the aggressiveness of the water, some phosphate compounds, known as inhibitors or passivators, can be used to produce long-term stable capacitors with high-aqueous electrolytes. Phosphate compounds are mentioned in patents regarding electrolytic capacitors with aqueous electrolytic systems. [28] Since phosphate ions were missing and the electrolyte was also alkaline in the investigated Taiwanese electrolytes, the capacitor evidently lacked any protection against water damage, and the formation of more-stable alumina oxides was inhibited. Therefore, only aluminium hydroxide was generated.

The results of chemical analysis were confirmed by measuring electrical capacitance and leakage current in a long-term test lasting 56 days. Due to the chemical corrosion, the oxide layer of these capacitors had been weakened, so after a short time the capacitance and the leakage current increased briefly, before dropping abruptly when gas pressure opened the vent. The report of Hillman and Helmold proved that the cause of the failed capacitors was a faulty electrolyte mixture used by the Taiwanese manufacturers, which lacked the necessary chemical ingredients to ensure the correct pH of the electrolyte over time, for long-term stability of the electrolytic capacitors. Their further conclusion, that the electrolyte with its alkaline pH value had the fatal flaw of a continual buildup of hydroxide without its being converted into the stable oxide, was verified on the surface of the anode foil both photographically and with an EDX-fingerprint analysis of the chemical components.

See also

Related Research Articles

<span class="mw-page-title-main">Motherboard</span> Main printed circuit board (PCB) for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

A photoflash capacitor is a high-voltage electrolytic capacitor used in flash cameras, professional flashes, and also in solid-state laser power supplies. Their usual purpose is to briefly power a flash tube, used to illuminate a photographic subject or optically pump a laser rod. As flash tubes require very high current for a very short time to operate, photoflash capacitors are designed to supply high discharge current pulses without excessive internal heating.

<span class="mw-page-title-main">Electrolytic capacitor</span> Type of capacitor

An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode or negative plate of the capacitor. Because of their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values. There are three families of electrolytic capacitor: aluminium electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors.

Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance. However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a resistance; this resistance is defined as the equivalent series resistance (ESR). If not otherwise specified, the ESR is always an AC resistance, which means it is measured at specified frequencies, 100 kHz for switched-mode power supply components, 120 Hz for linear power-supply components, and at its self-resonant frequency for general-application components. Additionally, audio components may report a "Q factor", incorporating ESR among other things, at 1000 Hz.

<span class="mw-page-title-main">Capacitor types</span> Manufacturing styles of an electronic device

Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices.

Black Gate is the name of a brand of audio grade electrolytic capacitor made in Japan by Rubycon Corporation. They have acquired a reputation for very high quality for use in the signal path, and power supplies, of audio circuitry.

<span class="mw-page-title-main">Nichicon</span>

Nichicon Corporation is a manufacturer of capacitors of various types, and is one of the largest manufacturers of capacitors in the world, headquartered in Karasuma Oike, Nakagyō-ku, Kyoto, Japan. In 1950, it separated from the Nii Works Co., established itself as Kansai-Nii Works and completed its first factory by 1956. In 1961, it adopted the Nichicon name and has been using it, or a variant thereof, ever since.

<span class="mw-page-title-main">Capacitor</span> Passive two-terminal electronic component that stores electrical energy in an electric field

In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.

<span class="mw-page-title-main">Capacitance meter</span> Type of electronic test equipment

A capacitance meter is a piece of electronic test equipment used to measure capacitance, mainly of discrete capacitors. Depending on the sophistication of the meter, it may display the capacitance only, or it may also measure a number of other parameters such as leakage, equivalent series resistance (ESR), and inductance. For most purposes and in most cases the capacitor must be disconnected from circuit; ESR can usually be measured in circuit.

<span class="mw-page-title-main">Ceramic capacitor</span> Fixed-value capacitor using ceramic

A ceramic capacitor is a fixed-value capacitor where the ceramic material acts as the dielectric. It is constructed of two or more alternating layers of ceramic and a metal layer acting as the electrodes. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes:

<span class="mw-page-title-main">Motor capacitor</span> Electrical capacitor used in electric motors

A motor capacitor is an electrical capacitor that alters the current to one or more windings of a single-phase alternating-current induction motor to create a rotating magnetic field. There are two common types of motor capacitors, start capacitor and run capacitor.

<span class="mw-page-title-main">Applications of capacitors</span> Uses of capacitors in daily life

Capacitors have many uses in electronic and electrical systems. They are so ubiquitous that it is rare that an electrical product does not include at least one for some purpose. Capacitors allow only AC signals to pass when they are charged blocking DC signals. The main components of filters are capacitors. Capacitors have the ability to connect one circuit segment to another. Capacitors are used by Dynamic Random Access Memory (DRAM) devices to represent binary information as bits.

<span class="mw-page-title-main">Tantalum capacitor</span> Type of electrolytic capacitor

A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of porous tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded by liquid or solid electrolyte as a cathode. Because of its very thin and relatively high permittivity dielectric layer, the tantalum capacitor distinguishes itself from other conventional and electrolytic capacitors in having high capacitance per volume and lower weight.

<span class="mw-page-title-main">ESR meter</span> Tool for measuring equivalent series resistance of capacitors

An ESR meter is a two-terminal electronic measuring instrument designed and used primarily to measure the equivalent series resistance (ESR) of real capacitors; usually without the need to disconnect the capacitor from the circuit it is connected to. Other types of meters used for routine servicing, including normal capacitance meters, cannot be used to measure a capacitor's ESR, although combined meters are available that measure both ESR and out-of-circuit capacitance. A standard (DC) milliohmmeter or multimeter cannot be used to measure ESR, because a steady direct current cannot be passed through the capacitor. Most ESR meters can also be used to measure non-inductive low-value resistances, whether or not associated with a capacitor; this leads to several additional applications described below.

<span class="mw-page-title-main">Failure of electronic components</span> Ways electronic components fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

<span class="mw-page-title-main">Polymer capacitor</span> Solid conductive electrolyte

A polymer capacitor, or more accurately a polymer electrolytic capacitor, is an electrolytic capacitor (e-cap) with a solid conductive polymer electrolyte. There are four different types:

<span class="mw-page-title-main">Supercapacitor</span> High-capacity electrochemical capacitor

A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than solid-state capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries.

<span class="mw-page-title-main">SAL electrolytic capacitor</span> Capacitor with high capacitance in a small package

SAL electrolytic capacitors are a form of capacitor developed for high capacitance in a small package, with a long and robust service life. They are aluminum electrolytic capacitors with anodic oxidized aluminum oxide as dielectric and with the semiconducting solid manganese dioxide as electrolyte. They are made of etched and formed aluminum anodes, which are folded for the dipped pearl types or wound into a roll for the axial style. The solid manganese dioxide electrolyte is formed onto this roll in a pyrolytic process, similar to that for solid tantalum capacitors.

<span class="mw-page-title-main">Aluminum electrolytic capacitor</span> Type of capacitor

Aluminum electrolytic capacitors are polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminum oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called "cathode foil" contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

<span class="mw-page-title-main">Niobium capacitor</span> Electrolytic capacitor

A niobium electrolytic capacitor is an electrolytic capacitor whose anode (+) is made of passivated niobium metal or niobium monoxide, on which an insulating niobium pentoxide layer acts as a dielectric. A solid electrolyte on the surface of the oxide layer serves as the capacitor's cathode (−).

References

  1. 1 2 3 4 D. M. Zogbi (September 2002). "Low-ESR Aluminium Electrolytic Failures Linked to Taiwanese Raw Material Problems" (PDF). Passive Component Industry. Paumanok Publications. 4 (5): 10, 12, 31. Archived from the original (PDF) on 3 March 2016. Retrieved 15 June 2018.
  2. 1 2 The Capacitor Plague, Posted on 26 November 2010 by PC Tools
  3. Arthur, Charles (31 May 2003). "Stolen formula for capacitors causing computers to burn out". Business News. The Independent. Archived from the original on 25 May 2015. Retrieved 16 January 2020.
  4. Sperling, Ed; Soderstrom, Thomas; Holzman, Carey (October 2002). "Got Juice?". EE Times . Archived from the original on 28 February 2014. Retrieved 11 February 2014.
  5. 1 2 3 Chiu, Yu-Tzu; Moore, Samuel K (February 2003). "Faults & Failures: Leaking capacitors muck up motherboards". IEEE Spectrum . 40 (2): 16–17. doi:10.1109/MSPEC.2003.1176509. ISSN   0018-9235. Archived from the original on 5 January 2018. Retrieved 22 August 2014.
  6. Carey Holzman, Overclockers, Capacitors: Not Just For Abit Owners, Motherboards with leaking capacitors, 10/9, 2002, Archived 18 October 2014 at the Wayback Machine
  7. Hales, Paul (5 November 2002). "Taiwanese component problems may cause mass recalls". The Inquirer. Archived from the original on 10 May 2011. Retrieved 20 March 2023.
  8. "Capacitor failures plague motherboard vendors, GEEK, 7 February 2003". Archived from the original on 13 January 2015. Retrieved 14 December 2014.
  9. W. BONOMO, G. HOOPER, D. RICHARDSON, D. ROBERTS, and TH. VAN DE STEEG, Vishay Intertechnology, Failure modes in capacitors, Archived 14 December 2014 at the Wayback Machine
  10. "Mainboardhersteller steht für Elko-Ausfall gerade", Heise (in German) (online ed.), DE, archived from the original on 25 December 2014, retrieved 14 December 2014.
  11. Michael Singer, CNET News, Bulging capacitors haunt Dell, 31 October 2005 Archived 14 December 2014 at the Wayback Machine
  12. "Michael Singer, CNET News, PCs plagued by bad capacitors". Archived from the original on 14 December 2014. Retrieved 14 December 2014.
  13. The guardian technology blog, How a stolen capacitor formula ended up costing Dell $300m Archived 3 March 2016 at the Wayback Machine
  14. Vance, Ashlee (28 June 2010). "Suit Over Faulty Computers Highlights Dell's Decline". The New York Times. Archived from the original on 28 January 2021. Retrieved 8 March 2012.
  15. Repair and bad capacitor information, Capacitor Lab, archived from the original on 12 April 2022, retrieved 26 April 2022.
  16. 1 2 Liotta, Bettyann (November 2002). "Taiwanese Cap Makers Deny Responsibility" (PDF). Passive Component Industry. Paumanok Publications. 4 (6): 6, 8–10. Archived from the original (PDF) on 20 November 2015. Retrieved 3 November 2015.
  17. "Capacitor plague, identifizierte Hersteller (~identified vendors)". Opencircuits.com. 10 January 2012. Archived from the original on 11 March 2015. Retrieved 3 September 2014.
  18. Uzawa, Shigeru; Komatsu, Akihiko; Ogawara, Tetsushi; Rubycon Corporation (2002). "Ultra Low Impedance Aluminium Electrolytic Capacitor with Water based Electrolyte". Journal of Reliability Engineering Association of Japan. 24 (4): 276–283. ISSN   0919-2697. Accession number 02A0509168.
  19. "A. Albertsen, Electrolytic Capacitor Lifetime Estimation" (PDF). Archived (PDF) from the original on 17 January 2015. Retrieved 4 September 2014.
  20. Sam G. Parler, Cornell Dubilier, Deriving Life Multipliers for Electrolytic Capacitors Archived 4 March 2016 at the Wayback Machine
  21. The Aluminium Electrolytic Condenser, H. 0. Siegmund, Bell System Technical Journal, v8, 1. January 1229, pp. 41–63
  22. A. Güntherschulze, H. Betz, Elektrolytkondensatoren, Verlag Herbert Cram, Berlin, 2. Auflage 1952
  23. 1 2 "Motherboard Capacitor Problem Blows Up". Silicon Chip. AU. 11 May 2003. Archived from the original on 14 June 2012. Retrieved 7 March 2012.
  24. Blown, Burst and Leaking Motherboard Capacitors - A Serious Problem, PCSTATS, 15 January 2005 Archived 16 August 2016 at the Wayback Machine
  25. Low-ESR Aluminium Electrolytic Failures Linked to Taiwanese Raw Material Problems (PDF), Molalla, archived from the original (PDF) on 26 April 2012
  26. 1 2 3 Hillman, Craig; Helmold, Norman (2004), Identification of Missing or Insufficient Electrolyte Constituents in Failed Aluminium Electrolytic Capacitors (PDF), DFR solutions, archived (PDF) from the original on 26 June 2011, retrieved 2 January 2009
  27. "Low-ESR Aluminum Electrolytic Failures Linked to Taiwanese Raw Material Problems". Archived from the original on 22 June 2017. Retrieved 16 March 2022.
  28. Chang, Jeng-Kuei, Liao, Chi-Min, Chen, Chih-Hsiung, Tsai, Wen-Ta, Effect of electrolyte composition on hydration resistance of anodized aluminium oxide Archived 24 September 2015 at the Wayback Machine

Further reading