Capstan equation

Last updated
Capstan equation diagram.svg
An example of when knowledge of the capstan equation might have been useful. The bent white tube contains a cord to raise and lower a blind. The tube is bent 40 degrees in two places. The blue line indicates a more efficient design. Example, no knowledge of capstan equation.png
An example of when knowledge of the capstan equation might have been useful. The bent white tube contains a cord to raise and lower a blind. The tube is bent 40 degrees in two places. The blue line indicates a more efficient design.
Schematic of quantities for capstan equation Capstan-derivation-diagram.svg
Schematic of quantities for capstan equation
An example of holding capstans and a powered capstan used to raise sails on a tall ship. Capstans on a tall ship.png
An example of holding capstans and a powered capstan used to raise sails on a tall ship.

The capstan equation [1] or belt friction equation, also known as Euler-Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan). [4] [1]

Contents

It also applies for fractions of one turn as occur with rope drives or band brakes.

Because of the interaction of frictional forces and tension, the tension on a line wrapped around a capstan may be different on either side of the capstan. A small holding force exerted on one side can carry a much larger loading force on the other side; this is the principle by which a capstan-type device operates.

A holding capstan is a ratchet device that can turn only in one direction; once a load is pulled into place in that direction, it can be held with a much smaller force. A powered capstan, also called a winch, rotates so that the applied tension is multiplied by the friction between rope and capstan. On a tall ship a holding capstan and a powered capstan are used in tandem so that a small force can be used to raise a heavy sail and then the rope can be easily removed from the powered capstan and tied off.

In rock climbing this effect allows a lighter person to hold (belay) a heavier person when top-roping, and also produces rope drag during lead climbing.

The formula is

where is the applied tension on the line, is the resulting force exerted at the other side of the capstan, is the coefficient of friction between the rope and capstan materials, and is the total angle swept by all turns of the rope, measured in radians (i.e., with one full turn the angle ).

For dynamic applications such as belt drives or brakes the quantity of interest is the force difference between and . The formula for this is

Several assumptions must be true for the equations to be valid:

  1. The rope is on the verge of full sliding, i.e. is the maximum load that one can hold. Smaller loads can be held as well, resulting in a smaller effective contact angle .
  2. It is important that the line is not rigid, in which case significant force would be lost in the bending of the line tightly around the cylinder. (The equation must be modified for this case.) For instance a Bowden cable is to some extent rigid and doesn't obey the principles of the capstan equation.
  3. The line is non-elastic.

It can be observed that the force gain increases exponentially with the coefficient of friction, the number of turns around the cylinder, and the angle of contact. Note that the radius of the cylinder has no influence on the force gain.

The table below lists values of the factor based on the number of turns and coefficient of friction μ.

Number
of turns
Coefficient of friction μ
0.10.20.30.40.50.60.7
0.51.41.92.63.54.86.69
11.93.56.612234381
23.5124315253518816661
36.64328618811239281612537503
412152188123228286751354002643702631
5235351239228675166356241535529353553321281

From the table it is evident why one seldom sees a sheet (a rope to the loose side of a sail) wound more than three turns around a winch. The force gain would be extreme besides being counter-productive since there is risk of a riding turn, result being that the sheet will foul, form a knot and not run out when eased (by slacking grip on the tail (free end)).

It is both ancient and modern practice for anchor capstans and jib winches to be slightly flared out at the base, rather than cylindrical, to prevent the rope (anchor warp or sail sheet) from sliding down. The rope wound several times around the winch can slip upwards gradually, with little risk of a riding turn, provided it is tailed (loose end is pulled clear), by hand or a self-tailer.

For instance, the factor "153,552,935" (5 turns around a capstan with a coefficient of friction of 0.6) means, in theory, that a newborn baby would be capable of holding (not moving) the weight of two USS Nimitz supercarriers (97,000 tons each, but for the baby it would be only a little more than 1 kg). The large number of turns around the capstan combined with such a high friction coefficient mean that very little additional force is necessary to hold such heavy weight in place. The cables necessary to support this weight, as well as the capstan's ability to withstand the crushing force of those cables, are separate considerations.

Derivation

The applied tension is a function of the total angle subtended by the rope on the capstan. On the verge of slipping, this is also the frictional force, which is by definition times the normal force . By simple geometry, the additional normal force when increasing the angle by a small angle is well approximated by . Combining these and considering infinitesimally small yields the differential equation

whose solution is

Generalizations

Generalization of the capstan equation for a V-belt

The belt friction equation for a v-belt is:

where is the angle (in radians) between the two flat sides of the pulley that the v-belt presses against. [5] A flat belt has an effective angle of .

The material of a V-belt or multi-V serpentine belt tends to wedge into the mating groove in a pulley as the load increases, improving torque transmission. [6]

For the same power transmission, a V-belt requires less tension than a flat belt, increasing bearing life. [5]

Generalization of the capstan equation for a rope lying on an arbitrary orthotropic surface

If a rope is lying in equilibrium under tangential forces on a rough orthotropic surface then all three following conditions are satisfied:

  1. No separation – normal reaction is positive for all points of the rope curve:
    , where is a normal curvature of the rope curve.
  2. Dragging coefficient of friction and angle are satisfying the following criteria for all points of the curve
  3. Limit values of the tangential forces:
    The forces at both ends of the rope and are satisfying the following inequality
    with
    where is a geodesic curvature of the rope curve, is a curvature of a rope curve, is a coefficient of friction in the tangential direction.
    If then

This generalization has been obtained by Konyukhov. [7] [8]

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity


Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward. The study of such motions is called ballistics, and such a trajectory is a ballistic trajectory. The only force of mathematical significance that is actively exerted on the object is gravity, which acts downward, thus imparting to the object a downward acceleration towards the Earth’s center of mass. Because of the object's inertia, no external force is needed to maintain the horizontal velocity component of the object's motion. Taking other forces into account, such as aerodynamic drag or internal propulsion, requires additional analysis. A ballistic missile is a missile only guided during the relatively brief initial powered phase of flight, and whose remaining course is governed by the laws of classical mechanics.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In numerical analysis, the Clenshaw algorithm, also called Clenshaw summation, is a recursive method to evaluate a linear combination of Chebyshev polynomials. The method was published by Charles William Clenshaw in 1955. It is a generalization of Horner's method for evaluating a linear combination of monomials.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In general relativity, Schwarzschild geodesics describe the motion of test particles in the gravitational field of a central fixed mass that is, motion in the Schwarzschild metric. Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System and of the deflection of light by gravity.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

<span class="mw-page-title-main">Leadscrew</span> Screw used as a linkage in a mechanism

A leadscrew, also known as a power screw or translation screw, is a screw used as a linkage in a machine, to translate turning motion into linear motion. Because of the large area of sliding contact between their male and female members, screw threads have larger frictional energy losses compared to other linkages. They are not typically used to carry high power, but more for intermittent use in low power actuator and positioner mechanisms. Leadscrews are commonly used in linear actuators, machine slides, vises, presses, and jacks. Leadscrews are a common component in electric linear actuators.

Scalar–tensor–vector gravity (STVG) is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.

Belt friction is a term describing the friction forces between a belt and a surface, such as a belt wrapped around a bollard. When a force applies a tension to one end of a belt or rope wrapped around a curved surface, the frictional force between the two surfaces increases with the amount of wrap about the curved surface, and only part of that force is transmitted to the other end of the belt or rope. Belt friction can be modeled by the Belt friction equation.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. This can be divided into compressive and adhesive forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. Frictional contact mechanics is the study of the deformation of bodies in the presence of frictional effects, whereas frictionless contact mechanics assumes the absence of such effects.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. 1 2 Attaway, Stephen W. (1999-11-01). The Mechanics of Friction in Rope Rescue. International Tech Rescue Symposium. Retrieved 23 Nov 2022.
  2. Metzger, Andreas; Konyukhov, Alexander; Schweizerhof, Karl (2011). "Finite Element implementation for the EULER-EYTELWEIN-problem and further use in FEM-simulation of common nautical knots". PAMM Proc. Appl. Math. Mech. 11: 249–250. doi:10.1002/pamm.201110116. S2CID   119597604.
  3. Mann, Herman (5 May 2005). "Belt Friction". Archived from the original on 2007-08-02. Retrieved 2013-02-23.
  4. Johnson, K. L. (1985). Contact Mechanics (PDF). Retrieved February 14, 2011.
  5. 1 2 Moradmand, Jamshid; Marcks, Russell; Looker, Tom. "Belt and Wrap Friction" (PDF).
  6. Slocum, Alexander (2008). "FUNdaMENTALS of Design" (PDF). page 5-9.
  7. Konyukhov, Alexander (2015-04-01). "Contact of ropes and orthotropic rough surfaces". Journal of Applied Mathematics and Mechanics. 95 (4): 406–423. Bibcode:2015ZaMM...95..406K. doi: 10.1002/zamm.201300129 . ISSN   1521-4001. S2CID   122410452.
  8. Konyukhov, A.; Izi, R. "Introduction to Computational Contact Mechanics: A Geometrical Approach". Wiley.

Further reading