Carbon nanotubes in interconnects

Last updated

In nanotechnology, carbon nanotube interconnects refer to the proposed use of carbon nanotubes in the interconnects between the elements of an integrated circuit. Carbon nanotubes (CNTs) can be thought of as single atomic layer graphite sheets rolled up to form seamless cylinders. Depending on the direction on which they are rolled, CNTs can be semiconducting or metallic. Metallic carbon nanotubes have been identified [1] as a possible interconnect material for the future technology generations and to replace copper interconnects. Electron transport can go over long nanotube lengths, 1 μm, enabling CNTs to carry very high currents (i.e. up to a current density of 109 Acm −2) with essentially no heating due to nearly one dimensional electronic structure. [2] Despite the current saturation in CNTs at high fields, [2] the mitigation of such effects is possible due to encapsulated nanowires. [3]

Contents

Carbon nanotubes for interconnects application in Integrated chips have been studied since 2001, [4] however the extremely attractive performances of individual tubes are difficult to reach when they are assembled in large bundles necessary to make real via or lines in integrated chips. Two proposed approaches to overcome the to date limitations are either to make very tiny local connections that will be needed in future advanced chips or to make carbon metal composite structure that will be compatible with existing microelectronic processes.

Hybrid interconnects that employ CNT vias in tandem with copper interconnects may offer advantages in reliability and thermal-management. [5] In 2016, the European Union has funded a four million euro project over three years to evaluate manufacturability and performance of composite interconnects employing both CNT and copper interconnects. The project named CONNECT (CarbON Nanotube compositE InterconneCTs) [6] involves the joint efforts of seven European research and industry partners on fabrication techniques and processes to enable reliable carbon nanotubes for on-chip interconnects in ULSI microchip production.

Local interconnects

While smaller dimensions mean better performance for transistors thanks to the decrease of intrinsic transistor gate delay, the situation is quite the opposite for interconnects. Smaller cross-section areas of interconnect would only lead to performance degradation such as increased interconnect resistance and power consumption. Since the 1990s the circuit performance is no longer limited by the transistors, thus interconnects have become a key issue and are as important as the transistors in determining chip performance. As technology scaling continues, the problem of interconnect performance degradation will only become more significant. Local interconnects that are on the lower levels of the interconnect stack connecting nearby logic gates are aggressively scaled down at each generation to follow the miniaturization of transistors and thus are mostly susceptible to performance degradation. On the local level where interconnects are most densely packed, and have pitch sizes close to the minimum feature size, we will need new interconnect materials that suffer much less from sizing effects than copper.

Thanks to the measured properties of individual carbon nanotubes (CNTs), such material has been proposed as future material for interconnects. [1] Particularly their current carrying capabilities are extremely high [4] typically around 109 Acm−2 and they exhibit a ballistic length up to micrometers. [2] However, due to the strong electron-phonon interaction in single-walled CNTs, it has been discovered that electronic current undergoes saturation at the voltage bias beyond 0.2 V. [2] [3]

Nevertheless, CNTs with few nm in diameter are extremely robust compared with metallic nanowires of similar diameter and demonstrate conducting properties superior as compared with copper. To make a connection, CNTs have to be paralleled in order to lower the resistance.

The resistance R of one single-walled carbon nanotubes can be expressed by

Where is an extrinsic contact resistance, is the quantum resistance (6.5 kΩ) which comes from the connection of one dimensional material to a three dimensional metal, is the CNT length and is the mean free path of the electron. If N tubes are paralleled, this resistance is divided by N thus one of the technological challenge is to maximize N in a given area. If L is small as compared with Lmfp, which normally is the case for very small vias, the technological parameters to optimize are primarily the contact resistance and the tube density.

Initial works have been focused on CNT vias connecting two metallic lines. Low temperature (400 °C) chemical vapor deposition growth of CNT on titanium nitride catalysed by cobalt particles has been optimized by the Fujitsu group. The catalyst particles obtained by laser ablation of a cobalt target sorted by size ultimately allow to grow a CNT density around 1012 CNT cm−2 using a multistep process using plasma and catalyst particles around 4 nm. In spite of these efforts, the electrical resistance of such via is 34 Ω _for a 160 nm diameter. Performances are close to tungsten plugs thus at least one order of magnitude higher than copper. For 60 nm via, a ballistic length of 80 nm has been determined. For processing lines, CNT technology is more difficult because dense forests of CNTs naturally grow perpendicularly to the substrate, where they are known as vertically aligned carbon nanotube arrays. Only few reports on horizontal lines have been published and rely on the redirection of CNT, [7] [8] or the filling in existing trenches by fluidic assembly processes. [9] The achieved performances are around 1 mΩcm, which is two decades higher than the requested values.

The reasons for such discrepancy between theoretical expectations and achieved performances are multiple. One obvious reason is the packing density after integration, which is far from the requested values, and the one used in the theoretical prediction. Indeed, even with the CNTs, which are strongly densified and spun, low conductance remains a problem. However, a recent paper [10] shows that a one-decade improvement on the conductivity may be gained just by high-pressure densification of the CNT. In spite of the development of high-density CNT material [11] the state of the art of integrated lines is still far from the 1013 cm−2 conducting walls requested by the International Technology Roadmap for Semiconductors. [12] Nevertheless, macroscopic assemblies with diameters of tens of microns consisting of double-walled CNTs [13] or single-walled carbon nanotubes [14] have experimental resistivity performances of 15 μΩcm after doping, demonstrating the potential of CNTs for interconnects.

Global interconnects

For current metallization technologies for high-performance and low-power microelectronics, copper is the material of choice due to its higher electromigration (EM) stability (resulting from the higher melting point) and conductivity to aluminium. For downscaled logic and memory applications up to 14 nm node the increased current density and reliability requirements per interconnect line still have known material and integration solutions. Thinner barrier and adhesion layers, doping of secondary metals to enhance grain boundary electromigration resistance, and integration concepts of selective cappings will be some of the adopted solutions. However, for dimensions below 7 to 10 nm nodes, the decreased volume of available conducting metal will force innovative material and integration approaches towards novel interconnect architectures. Also for power and high-performance applications the most critical challenges are high ampacity, thermal conductivity and electromigration resistance. Far away from bulk, copper conductors that would already melt at 104 A/cm2, current copper metallization lines can withstand 107 A/cm2 due to good heat dissipation into thermal contact to the surrounding material, optimized liner and capping as well as plating and CMP processes.

The reliability of state of the art interconnects is closely linked to electromigration . This adverse effect describes the material transport and consequently void formation especially in thin metal lines to the anode by a combination of the electron wind force, the temperature gradient induced force, the stress gradient induced force and the surface tension force. Depending on the design of the interconnect layout and the used metallization scheme, the dominance of each driving force can change. Even at the current scaling node of CMOS technology, these two issues are among the main reasons for the trend that the increased density scaling of transistors no longer automatically leads to "performance scaling" (i. e. increased performance per transistor).

CNTs are being studied as a potential copper replacement owing to their excellent electrical properties in terms of conductivity, ampacity and high frequency characteristics. However, the performances of CNTs integrated into functional devices are so far systematically much lower than those of nearly perfect CNTs selected for fundamental studies worldwide. As a consequence, combinations of CNTs with copper were envisioned soon after the pioneering study about CNT interconnects. [15] Initial experimental realizations focused on a "bulk" approach where a mixture of CNTs and copper is deposited from a solution on the target substrate. [16] [17] [18] This approach demonstrated mitigated performances for interconnect, such that focus is now almost exclusively on composite materials where the CNTs are aligned with respect to the current flow (referred to as aligned CNT-copper composite). Furthermore, contact resistance, mechanical stability, planarity and integration could be improved by a supporting conductive matrix. Chai et al. [19] [20] [21] first demonstrated the fabrication of vertical interconnects using aligned CNT-copper composite materials in 2007 by first growing vertically aligned CNTs before filling the voids between CNTs with copper through an electroplating method. It was shown that this material could reach low, copper-like, resistivity but was more resistant to electromigration than copper. More recently, a renewed interest for this material was generated by the work of Hata group [22] claiming a 100 fold increase in current carrying capacity of aligned CNT-copper material compared to pure copper. Several groups are now working worldwide on the integration of aligned CNT-copper composite materials in interconnect structures, [23] [24] [25] [26] Present and near-future efforts are focusing on demonstrating and evaluating the performances of aligned CNT-copper composite materials for both vertical and horizontal interconnects, and to develop a CMOS-compatible process flow for multilevel global interconnects. [6]

Physical and electrical characterization

Electromigration is typically characterized through the time of failure of a current carrying device. [8] The scaling of the effect with current and temperature is used for accelerated testing and predictive analysis. Despite the great technological relevance of such measurements, there exists no widely used protocol to characterize electromigration. However, certain approaches are somewhat established, such as the variation of current and temperature. One of the unresolved challenges of electromigration are self-amplification effects of electromigration through self-heating at defects in interconnect leads. [27] The local temperature rise due to current crowding across such defects is typically unknown. Since the underlying processes are typically thermally activated, the lack of precise knowledge of the local temperature makes the field of electromigration studies challenging, resulting in a lack of reproducibility and inter-comparability of different experimental approaches. A combination with in-situ temperature measurement is therefore desirable. There are numerous methods for thermometry and the measurement of thermal conductance of devices and structures on a length scale of microns to macroscopic. However, the quantitative thermal characterization of nanostructures is described as an unsolved challenge in the current scientific literature. [28] [29] Several methods have been proposed using Raman spectroscopy, electron energy loss spectroscopy, infrared microscopy, self-heating methods and scanning thermal microscopy. However, on the length scale relevant to single CNTs and their defects, i. e. the 1 nm-scale, no established solution exists applicable to CNT-based materials (our interconnects) and dielectrics (our insulators and matrix materials). Scanning thermal microscopy and thermometry [30] is the most promising technique for its versatility, but restrictions in tip fabrication, operation modes and signal sensitivity have limited the resolutions to 10 nm in the most cases. To increase the resolution of such technique is an open challenge which is attracting lot of attention from the industry and scientific community. [6]

The methodology of electrical transport measurements in single CNTs, bundles and composites thereof is well established. To study finite-size effects in transport such as the transition from diffusive to ballistic transport requires the precise placement and addressing of nanoscale electrodes, typically fabricated using electron beam lithography.

Structural characterization of CNTs using transmission electron microscopy has been shown to be a useful method for structures identification and measures. Results have been reported with resolutions down to about 1 nm and very good material contact. [31] Due to the experimental difficulties of contacting nano-objects inside an electron microscope, there have only been few attempts to combine transmission electron microscopy structural characterization with in-situ electrical transport measurements. [32] [33] [6]

Modelling and simulation

Macroscopic

From a macroscopic point of view, a generalized compact RLC model for CNT interconnects can be depicted as in, [34] where the model of an individual multi-wall carbon nanotube is shown with parasitics representing both dc conductance and high-frequency impedance i.e. inductance and capacitance effects. Multiple shells of a multi-wall carbon nanotube are presented by the individual parasitics of each shell. Such model can also be applicable to single-walled carbon nanotubes where only a single shell is represented.

The shell resistance of an individual nanotube can be obtained by computing the resistance of each shell as

where is the ballistic resistance, is contact resistance, is the distributed ohmic resistance and is the resistance due to the applied bias voltage. Capacitance of nanotubes consists of quantum, Cq and electrostatic capacitance Ce. For multi-wall carbon nanotubes, there is the shell-to-shell coupling capacitance, Cc. Additionally there is a coupling capacitance, Ccm between any two CNT bundles. As for inductance, CNTs have both kinetic, Lk and magnetic inductance, Lm. There are also mutual inductances between shells, Mm and bundles, Mmm.

Detailed simulation for signal interconnects have been performed by Naeemi et al., [35] [36] [37] and it has been shown that CNTs have lower parasitics than copper metal lines, however, the contact resistance between CNT-to-CNT and CNT-to-metal is large and can be detrimental for timing issues. Simulation of power delivery interconnects performed by Todri-Sanial et al. [38] have shown that CNTs overall lead to reduced voltage drop compared with copper interconnects.

The significant dependence of the current density between the CNTs on the geometry between them has been proved by Tsagarakis and Xanthakis. [39]

Mesoscopic

The macroscopic circuit simulation addresses just the interconnect performance neglecting other important aspects like reliability and variability of CNTs, which can be properly treated only at mesoscopic level by means of fully three dimensional Technology Computer Aided Design modelling approaches. [40] Recently, industrial and scientific community are investing considerable efforts to investigate the modelling of CNT variability and reliability by means of three dimensional Technology Computer Aided Design approaches for advanced technological generations. [6]

Microscopic

Underneath the macroscopic (Circuit Level) and mesoscopic (Technology Computer Aided Design level) modelling of CNT interconnects, it is also important to consider the microscopic (Ab Initio level) modelling. Significant work has been carried out on the electronic, [41] [42] [43] [44] and thermal, [45] [46] modeling of CNTs. Band structure and molecular level simulation tools can be also found on nanoHUB. Further potential modeling improvements include the self-consistent simulation of the interaction between electronic and thermal transport in CNTs, but also in copper-CNT composite lines and CNT contacts with metals and other relevant materials.

The CNTs with encapsulated nanowires have been studied at the ab initio level with self-consistent treatment of electronic and phonon transport and demonstrated to improve current-voltage performance. [3]

A fully experimentally-calibrated electrothermal modelling tool would prove useful in studying, not only the performance of CNT and composite lines, but also their reliability and variability, and the impact of the contacts on the electronic and thermal performance. [6] In this context, a full three dimensional physics-based and multi-scale (from ab-initio material simulation up to circuit simulation) simulation package that takes into account all aspects of VLSI interconnects (performance, power dissipation and reliability) is desirable to enable accurate evaluation of future CNT-based technologies.

See also

Related Research Articles

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers.

In semiconductor technology, copper interconnects are interconnects made of copper. They are used in silicon integrated circuits (ICs) to reduce propagation delays and power consumption. Since copper is a better conductor than aluminium, ICs using copper for their interconnects can have interconnects with narrower dimensions, and use less energy to pass electricity through them. Together, these effects lead to ICs with better performance. They were first introduced by IBM, with assistance from Motorola, in 1997.

<span class="mw-page-title-main">Electromigration</span> Movement of ions in an electrical field

Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms. The effect is important in applications where high direct current densities are used, such as in microelectronics and related structures. As the structure size in electronics such as integrated circuits (ICs) decreases, the practical significance of this effect increases.

<span class="mw-page-title-main">Nanoelectromechanical systems</span>

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include accelerometers and sensors to detect chemical substances in the air.

<span class="mw-page-title-main">Graphene</span> Hexagonal lattice made of carbon atoms

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a two-dimensional honeycomb lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds.

<span class="mw-page-title-main">Carbon nanofiber</span>

Carbon nanofibers (CNFs), vapor grown carbon fibers (VGCFs), or vapor grown carbon nanofibers (VGCNFs) are cylindrical nanostructures with graphene layers arranged as stacked cones, cups or plates. Carbon nanofibers with graphene layers wrapped into perfect cylinders are called carbon nanotubes.

Hybrid solar cells combine advantages of both organic and inorganic semiconductors. Hybrid photovoltaics have organic materials that consist of conjugated polymers that absorb light as the donor and transport holes. Inorganic materials in hybrid cells are used as the acceptor and electron transporter in the structure. The hybrid photovoltaic devices have a potential for not only low-cost by roll-to-roll processing but also for scalable solar power conversion.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Potential applications of carbon nanotubes</span>

Carbon nanotubes (CNTs) are cylinders of one or more layers of graphene (lattice). Diameters of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) are typically 0.8 to 2 nm and 5 to 20 nm, respectively, although MWNT diameters can exceed 100 nm. CNT lengths range from less than 100 nm to 0.5 m.

Nanotube membranes are either a single, open-ended nanotube(CNT) or a film composed of an array of nanotubes that are oriented perpendicularly to the surface of an impermeable film matrix like the cells of a honeycomb. 'Impermeable' is essential here to distinguish nanotube membrane with traditional, well known porous membranes. Fluids and gas molecules may pass through the membrane en masse but only through the nanotubes. For instance, water molecules form ordered hydrogen bonds that act like chains as they pass through the CNTs. This results in an almost frictionless or atomically smooth interface between the nanotubes and water which relate to a "slip length" of the hydrophobic interface. Properties like the slip length that describe the non-continuum behavior of the water within the pore walls are disregarded in simple hydrodynamic systems and absent from the Hagen–Poiseuille equation. Molecular dynamic simulations better characterize the flow of water molecules through the carbon nanotubes with a varied form of the Hagen–Poiseuille equation that takes into account slip length.

Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductors, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to conventional solar cells made of crystalline silicon, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.

<span class="mw-page-title-main">Transparent conducting film</span> Optically transparent and electrically conductive material

Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.

As the devices continue to shrink further into the sub-100 nm range following the trend predicted by Moore’s law, the topic of thermal properties and transport in such nanoscale devices becomes increasingly important. Display of great potential by nanostructures for thermoelectric applications also motivates the studies of thermal transport in such devices. These fields, however, generate two contradictory demands: high thermal conductivity to deal with heating issues in sub-100 nm devices and low thermal conductivity for thermoelectric applications. These issues can be addressed with phonon engineering, once nanoscale thermal behaviors have been studied and understood.

Interfacial thermal resistance, also known as thermal boundary resistance, or Kapitza resistance, is a measure of resistance to thermal flow at the interface between two materials. While these terms may be used interchangeably, Kapitza resistance technically refers to an atomically perfect, flat interface whereas thermal boundary resistance is a more broad term. This thermal resistance differs from contact resistance because it exists even at atomically perfect interfaces. Owing to differences in electronic and vibrational properties in different materials, when an energy carrier attempts to traverse the interface, it will scatter at the interface. The probability of transmission after scattering will depend on the available energy states on side 1 and side 2 of the interface.

A carbon nanotube field-effect transistor (CNTFET) is a field-effect transistor that utilizes a single carbon nanotube or an array of carbon nanotubes as the channel material instead of bulk silicon in the traditional MOSFET structure. First demonstrated in 1998, there have been major developments in CNTFETs since.

<span class="mw-page-title-main">Carbon nanotube supported catalyst</span>

Carbon nanotube supported catalyst is a novel supported catalyst, using carbon nanotubes as the support instead of the conventional alumina or silicon support. The exceptional physical properties of carbon nanotubes (CNTs) such as large specific surface areas, excellent electron conductivity incorporated with the good chemical inertness, and relatively high oxidation stability makes it a promising support material for heterogeneous catalysis.

Mark S. Lundstrom is an American electrical engineering researcher, educator, and author. He is known for contributions to the theory, modeling, and understanding of semiconductor devices, especially nanoscale transistors, and as the creator of the nanoHUB, a major online resource for nanotechnology. Lundstrom is Don and Carol Scifres Distinguished Professor of Electrical and Computer Engineering and in 2020 served as Acting Dean of the College of Engineering at Purdue University, in West Lafayette, Indiana.

<span class="mw-page-title-main">Chemiresistor</span>

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: metal-oxide semiconductors, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

<span class="mw-page-title-main">Boron nitride nanotube</span>

Boron nitride nanotubes (BNNTs) are a polymorph of boron nitride. They were predicted in 1994 and experimentally discovered in 1995. Structurally they are similar to carbon nanotubes, which are cylinders with sub-micrometer diameters and micrometer lengths, except that carbon atoms are alternately substituted by nitrogen and boron atoms. However, the properties of BN nanotubes are very different: whereas carbon nanotubes can be metallic or semiconducting depending on the rolling direction and radius, a BN nanotube is an electrical insulator with a bandgap of ~5.5 eV, basically independent of tube chirality and morphology. In addition, a layered BN structure is much more thermally and chemically stable than a graphitic carbon structure. BNNTs have unique physical and chemical properties, when compared to Carbon Nanotubes (CNTs) providing a very wide range of commercial and scientific applications. Although BNNTs and CNTs share similar tensile strength properties of circa 100 times stronger than steel and 50 times stronger than industrial-grade carbon fibre, BNNTs can withstand high temperatures of up to 900 °C. as opposed to CNTs which remain stable up to temperatures of 400 °C, and are also capable of absorbing radiation. BNNTS are packed with physicochemical features including high hydrophobicity and considerable hydrogen storage capacity and they are being investigated for possible medical and biomedical applications, including gene delivery, drug delivery, neutron capture therapy, and more generally as biomaterials BNNTs are also superior to CNTs in the way they bond to polymers giving rise to many new applications and composite materials

Vertically aligned carbon nanotube arrays (VANTAs) are a unique microstructure consisting of carbon nanotubes oriented with their longitudinal axis perpendicular to a substrate surface. These VANTAs effectively preserve and often accentuate the unique anisotropic properties of individual carbon nanotubes and possess a morphology that may be precisely controlled. VANTAs are consequently widely useful in a range of current and potential device applications.

References

  1. 1 2 Kreupl, F; Graham, A.P; Duesberg, G.S; Steinhögl, W; Liebau, M; Unger, E; Hönlein, W (2002). "Carbon nanotubes in interconnect applications". Microelectronic Engineering. Elsevier BV. 64 (1–4): 399–408. arXiv: cond-mat/0412537 . doi:10.1016/s0167-9317(02)00814-6. ISSN   0167-9317.
  2. 1 2 3 4 Park, Ji-Yong; Rosenblatt, Sami; Yaish, Yuval; Sazonova, Vera; Üstünel, Hande; Braig, Stephan; Arias, T. A.; Brouwer, Piet W.; McEuen, Paul L. (2004). "Electron−Phonon Scattering in Metallic Single-Walled Carbon Nanotubes". Nano Letters. American Chemical Society (ACS). 4 (3): 517–520. arXiv: cond-mat/0309641 . Bibcode:2004NanoL...4..517P. doi:10.1021/nl035258c. ISSN   1530-6984. S2CID   32640167.
  3. 1 2 3 Vasylenko, Andrij; Wynn, Jamie; Medeiros, Paulo V. C.; Morris, Andrew J.; Sloan, Jeremy; Quigley, David (2017-03-27). "Encapsulated nanowires: Boosting electronic transport in carbon nanotubes". Physical Review B. 95 (12): 121408. arXiv: 1611.04867 . Bibcode:2017PhRvB..95l1408V. doi:10.1103/PhysRevB.95.121408. S2CID   59023024.
  4. 1 2 Wei, B. Q.; Vajtai, R.; Ajayan, P. M. (20 August 2001). "Reliability and current carrying capacity of carbon nanotubes". Applied Physics Letters. AIP Publishing. 79 (8): 1172–1174. Bibcode:2001ApPhL..79.1172W. doi:10.1063/1.1396632. ISSN   0003-6951.
  5. Chai, Yang; Chan, Philip C. H. (2008). "High electromigration-resistant copper/carbon nanotube composite for interconnect application". 2008 IEEE International Electron Devices Meeting. IEEE. pp. 1–4. doi:10.1109/iedm.2008.4796764. ISBN   978-1-4244-2377-4.
  6. 1 2 3 4 5 6 "CORDIS | European Commission".
  7. Tawfick, S.; O'Brien, K.; Hart, A. J. (2 November 2009). "Flexible High-Conductivity Carbon-Nanotube Interconnects Made by Rolling and Printing". Small. Wiley. 5 (21): 2467–2473. doi:10.1002/smll.200900741. hdl: 2027.42/64295 . ISSN   1613-6810. PMID   19685444.
  8. 1 2 Li, Hong; Liu, Wei; Cassell, Alan M.; Kreupl, Franz; Banerjee, Kaustav (2013). "Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part II: Characterization". IEEE Transactions on Electron Devices. Institute of Electrical and Electronics Engineers (IEEE). 60 (9): 2870–2876. Bibcode:2013ITED...60.2870L. doi:10.1109/ted.2013.2275258. ISSN   0018-9383. S2CID   18083578.
  9. Kim, Young Lae; Li, Bo; An, Xiaohong; Hahm, Myung Gwan; Chen, Li; Washington, Morris; Ajayan, P. M.; Nayak, Saroj K.; Busnaina, Ahmed; Kar, Swastik; Jung, Yung Joon (2 September 2009). "Highly Aligned Scalable Platinum-Decorated Single-Wall Carbon Nanotube Arrays for Nanoscale Electrical Interconnects". ACS Nano. American Chemical Society (ACS). 3 (9): 2818–2826. doi:10.1021/nn9007753. ISSN   1936-0851. PMID   19725514.
  10. Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. (25 June 2014). "High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity". Nature Communications. Springer Science and Business Media LLC. 5 (1): 3848. Bibcode:2014NatCo...5.3848W. doi: 10.1038/ncomms4848 . ISSN   2041-1723. PMID   24964266.
  11. Zhong, Guofang; Warner, Jamie H.; Fouquet, Martin; Robertson, Alex W.; Chen, Bingan; Robertson, John (28 March 2012). "Growth of Ultrahigh Density Single-Walled Carbon Nanotube Forests by Improved Catalyst Design". ACS Nano. American Chemical Society (ACS). 6 (4): 2893–2903. doi:10.1021/nn203035x. ISSN   1936-0851. PMID   22439978.
  12. "ITRS Reports".
  13. Zhao, Yao; Wei, Jinquan; Vajtai, Robert; Ajayan, Pulickel M.; Barrera, Enrique V. (6 September 2011). "Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals". Scientific Reports. Springer Science and Business Media LLC. 1 (1): 83. Bibcode:2011NatSR...1E..83Z. doi: 10.1038/srep00083 . ISSN   2045-2322. PMC   3216570 . PMID   22355602.
  14. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E.; Fairchild, S. B.; Ferguson, J. B.; Maruyama, B.; Kono, J.; Talmon, Y.; Cohen, Y.; Otto, M. J.; Pasquali, M. (10 January 2013). "Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity". Science. American Association for the Advancement of Science (AAAS). 339 (6116): 182–186. Bibcode:2013Sci...339..182B. doi:10.1126/science.1228061. hdl: 1911/70792 . ISSN   0036-8075. PMID   23307737. S2CID   10843825.
  15. Intel US patent 7,300,860 (filed 2004); IBM US patents 7,473,633 & 7,439,081 (filed 2006)
  16. Liu, Ping; Xu, Dong; Li, Zijiong; Zhao, Bo; Kong, Eric Siu-Wai; Zhang, Yafei (2008). "Fabrication of CNTs/Cu composite thin films for interconnects application". Microelectronic Engineering. Elsevier BV. 85 (10): 1984–1987. doi:10.1016/j.mee.2008.04.046. ISSN   0167-9317.
  17. Jung Joon Yoo; Jae Yong Song; Jin Yu; Ho Ki Lyeo; Sungjun Lee; Jun Hee Hahn (2008). Multi-walled carbon nanotube/nanocrystalline copper nanocomposite film as an interconnect material. 2008 58th Electronic Components and Technology Conference. p. 1282. doi:10.1109/ECTC.2008.4550140.
  18. Aryasomayajula, Lavanya; Rieske, Ralf; Wolter, Klaus-Juergen (2011). Application of copper-Carbon Nanotubes composite in packaging interconnects. International Spring Seminar on Electronics Technology. IEEE. p. 531. doi:10.1109/isse.2011.6053943. ISBN   978-1-4577-2111-3.
  19. Chai, Yang; Zhang, Kai; Zhang, Min; Chan, Philip C. H.; Yuen, Matthrew M. F. (2007). Carbon Nanotube/Copper Composites for Via Filling and Thermal Management. Electronic Components and Technology Conference. IEEE. p. 1224. doi:10.1109/ectc.2007.373950. ISBN   978-1-4244-0984-6.
  20. Chai, Yang; Chan, Philip C. H. (2008). High electromigration-resistant copper/carbon nanotube composite for interconnect application. International Electron Devices Meeting. IEEE. p. 607. doi:10.1109/iedm.2008.4796764. ISBN   978-1-4244-2377-4.
  21. Yang Chai; Philip C. H. Chan; Yunyi Fu; Y. C. Chuang; C. Y. Liu (2008). Copper/carbon nanotube composite interconnect for enhanced electromigration resistance. Electronic Components and Technology Conference. IEEE. p. 412. doi:10.1109/ECTC.2008.4550004.
  22. Subramaniam, Chandramouli; Yamada, Takeo; Kobashi, Kazufumi; Sekiguchi, Atsuko; Futaba, Don N.; Yumura, Motoo; Hata, Kenji (23 July 2013). "One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite". Nature Communications. Springer Science and Business Media LLC. 4 (1): 2202. Bibcode:2013NatCo...4.2202S. doi: 10.1038/ncomms3202 . ISSN   2041-1723. PMC   3759037 . PMID   23877359.
  23. Melzer, Marcel; Waechtler, Thomas; Müller, Steve; Fiedler, Holger; Hermann, Sascha; Rodriguez, Raul D.; Villabona, Alexander; Sendzik, Andrea; Mothes, Robert; Schulz, Stefan E.; Zahn, Dietrich R.T.; Hietschold, Michael; Lang, Heinrich; Gessner, Thomas (2013). "Copper oxide atomic layer deposition on thermally pretreated multi-walled carbon nanotubes for interconnect applications". Microelectronic Engineering. Elsevier BV. 107: 223–228. doi:10.1016/j.mee.2012.10.026. ISSN   0167-9317.
  24. Feng, Ying; Burkett, Susan L. (2015). "Fabrication and electrical performance of through silicon via interconnects filled with a copper/carbon nanotube composite". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. American Vacuum Society. 33 (2): 022004. doi:10.1116/1.4907417. ISSN   2166-2746.
  25. Feng, Ying; Burkett, Susan L. (2015). "Modeling a copper/carbon nanotube composite for applications in electronic packaging". Computational Materials Science. Elsevier BV. 97: 1–5. doi:10.1016/j.commatsci.2014.10.014. ISSN   0927-0256.
  26. Jordan, Matthew B.; Feng, Ying; Burkett, Susan L. (2015). "Development of seed layer for electrodeposition of copper on carbon nanotube bundles". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. American Vacuum Society. 33 (2): 021202. doi:10.1116/1.4907164. ISSN   2166-2746.
  27. Menges, Fabian; Riel, Heike; Stemmer, Andreas; Dimitrakopoulos, Christos; Gotsmann, Bernd (14 November 2013). "Thermal Transport into Graphene through Nanoscopic Contacts". Physical Review Letters. American Physical Society (APS). 111 (20): 205901. Bibcode:2013PhRvL.111t5901M. doi:10.1103/physrevlett.111.205901. ISSN   0031-9007. PMID   24289696.
  28. Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li (2014). "Nanoscale thermal transport. II. 2003–2012". Applied Physics Reviews. AIP Publishing. 1 (1): 011305. Bibcode:2014ApPRv...1a1305C. doi:10.1063/1.4832615. hdl: 1721.1/97398 . ISSN   1931-9401. S2CID   1493964.
  29. Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R. (15 January 2003). "Nanoscale thermal transport". Journal of Applied Physics. AIP Publishing. 93 (2): 793–818. Bibcode:2003JAP....93..793C. doi:10.1063/1.1524305. hdl: 2027.42/70161 . ISSN   0021-8979. S2CID   15327316.
  30. Majumdar, A. (1999). "Scanning Thermal Microscopy". Annual Review of Materials Science . Annual Reviews. 29 (1): 505–585. Bibcode:1999AnRMS..29..505M. doi:10.1146/annurev.matsci.29.1.505. ISSN   0084-6600. S2CID   98802503.
  31. Eliseev, Andrey A.; Chernysheva, Marina V.; Verbitskii, Nikolay I.; Kiseleva, Ekaterina A.; Lukashin, Alexey V.; Tretyakov, Yury D.; Kiselev, Nikolay A.; Zhigalina, Olga M.; Zakalyukin, Ruslan M.; Vasiliev, Alexandre L.; Krestinin, Anatoly V.; Hutchison, John L.; Freitag, Bert (10 November 2009). "Chemical Reactions within Single-Walled Carbon Nanotube Channels". Chemistry of Materials. American Chemical Society (ACS). 21 (21): 5001–5003. doi:10.1021/cm803457f. ISSN   0897-4756.
  32. Baloch, Kamal H.; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John (8 April 2012). "Remote Joule heating by a carbon nanotube". Nature Nanotechnology. Springer Nature. 7 (5): 316–319. Bibcode:2012NatNa...7..316B. doi:10.1038/nnano.2012.39. ISSN   1748-3387. PMID   22484913.
  33. Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd (2016). "Temperature mapping of operating nanoscale devices by scanning probe thermometry". Nature Communications. 7: 10874. Bibcode:2016NatCo...710874M. doi:10.1038/ncomms10874. PMC   4782057 . PMID   26936427.
  34. Todri-Sanial, Aida (2014). Investigation of horizontally aligned carbon nanotubes for efficient power delivery in 3D ICs. 18th Workshop on Signal and Power Integrity. IEEE. p. 1-4. doi:10.1109/sapiw.2014.6844535. ISBN   978-1-4799-3599-4.
  35. Naeemi, A.; Sarvari, R.; Meindl, J.D. (2004). Performance comparison between carbon nanotube and copper interconnects for GSI. International Electron Devices Meeting. IEEE. p. 699-702. doi:10.1109/iedm.2004.1419265. ISBN   0-7803-8684-1.
  36. Naeemi, A.; Sarvari, R.; Meindl, J.D. (2005). "Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)". IEEE Electron Device Letters. Institute of Electrical and Electronics Engineers (IEEE). 26 (2): 84–86. Bibcode:2005IEDL...26...84N. doi:10.1109/led.2004.841440. ISSN   0741-3106. S2CID   17573875.
  37. Naeemi, A.; Meindl, J.D. (2005). "Monolayer metallic nanotube interconnects: promising candidates for short local interconnects". IEEE Electron Device Letters. Institute of Electrical and Electronics Engineers (IEEE). 26 (8): 544–546. Bibcode:2005IEDL...26..544N. doi:10.1109/led.2005.852744. ISSN   0741-3106. S2CID   27109604.
  38. A. Todri-Sanial, J. Dijon, A. Maffucci, "Carbon Nanotube Interconnects: Process, Design and Applications," Springer 2016, ISBN   978-3-319-29744-6
  39. Tsagarakis, M. S.; Xanthakis, J. P. (2017). "Tunneling currents between carbon nanotubes inside the 3-dimensional potential of a dielectric matrix". AIP Advances. AIP Publishing. 7 (7): 075012. Bibcode:2017AIPA....7g5012T. doi: 10.1063/1.4990971 . ISSN   2158-3226.
  40. Sabelka, R.; Harlander, C.; Selberherr, S. (2000). The state of the art in interconnect simulation. International Conference on Simulation of Semiconductor Processes and Devices. IEEE. p. 6-11. doi:10.1109/sispad.2000.871194. ISBN   0-7803-6279-9.
  41. Zienert, A; Schuster, J; Gessner, T (30 September 2014). "Metallic carbon nanotubes with metal contacts: electronic structure and transport". Nanotechnology. IOP Publishing. 25 (42): 425203. Bibcode:2014Nanot..25P5203Z. doi:10.1088/0957-4484/25/42/425203. ISSN   0957-4484. PMID   25267082. S2CID   5024206.
  42. Takada, Yukihiro; Yamamoto, Takahiro (1 May 2013). "Wave-Packet Dynamics Simulation on Electronic Transport in Carbon Nanotubes with Randomly Distributed Impurities". Japanese Journal of Applied Physics. IOP Publishing. 52 (6S): 06GD07. Bibcode:2013JaJAP..52fGD07T. doi:10.7567/jjap.52.06gd07. ISSN   0021-4922. S2CID   119830263.
  43. Thiagarajan, Kannan; Lindefelt, Ulf (15 June 2012). "High-field electron transport in semiconducting zigzag carbon nanotubes". Nanotechnology. IOP Publishing. 23 (26): 265703. Bibcode:2012Nanot..23z5703T. doi:10.1088/0957-4484/23/26/265703. ISSN   0957-4484. PMID   22699562. S2CID   43038982.
  44. Adessi, C.; Avriller, R.; Blase, X.; Bournel, A.; Cazin d'Honincthun, H.; Dollfus, P.; Frégonèse, S.; Galdin-Retailleau, S.; López-Bezanilla, A.; Maneux, C.; Nha Nguyen, H.; Querlioz, D.; Roche, S.; Triozon, F.; Zimmer, T. (2009). "Multiscale simulation of carbon nanotube devices". Comptes Rendus Physique. Elsevier BV. 10 (4): 305–319. Bibcode:2009CRPhy..10..305A. doi:10.1016/j.crhy.2009.05.004. ISSN   1631-0705.
  45. Yamamoto, Takahiro; Watanabe, Kazuyuki (30 June 2006). "Nonequilibrium Green's Function Approach to Phonon Transport in Defective Carbon Nanotubes". Physical Review Letters. 96 (25): 255503. arXiv: cond-mat/0606112 . Bibcode:2006PhRvL..96y5503Y. doi:10.1103/physrevlett.96.255503. ISSN   0031-9007. PMID   16907319. S2CID   6148204.
  46. Lindsay, L.; Broido, D. A.; Mingo, Natalio (11 September 2009). "Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules". Physical Review B. American Physical Society (APS). 80 (12): 125407. Bibcode:2009PhRvB..80l5407L. doi:10.1103/physrevb.80.125407. ISSN   1098-0121.