Carolyn Lawrence-Dill | |
---|---|
Born | El Paso, Texas, U.S. | May 18, 1974
Alma mater | University of Georgia Texas Tech University Hendrix College |
Known for | Plant science data access and availability; gene function prediction tools and resources; making phenotype descriptions computable, research community-building |
Scientific career | |
Fields | Plant Biology Bioinformatics |
Institutions | Agricultural Research Service, Iowa State University, Colorado State University |
Doctoral advisor | R. Kelly Dawe & Russell L. Malmberg |
Carolyn Joy Lawrence-Dill (born May 18, 1974) is an American plant biologist and academic administrator. She develops computational systems and tools to help plant science researchers use plant genetics and genomics data for basic biology applications that advance plant breeding.
Carolyn Joy Lawrence-Dill, née Cogburn, was born in El Paso, Texas. She grew up in Throckmorton, then moved to Cleburne in 1989. She graduated in 1992 from Cleburne High School. Lawrence-Dill earned a B.A. degree in biology from Hendrix College in 1996. She received her M.S. degree in biology in 1997 from Texas Tech University where she worked on cotton physiology, and her Ph.D. degree in botany in 2003 from the University of Georgia. Her doctoral dissertation focused on integrating traditional and computational methods for inferring gene function in plants. [1]
Following her formal education, Lawrence-Dill served for two years as a postdoctoral researcher under the direction of Volker Brendel [2] at Iowa State University.
In the summer of 2005, Lawrence-Dill began work as a research geneticist for the USDA-ARS. She served as the director of MaizeGDB, the maize model organism database through December 2013. In 2014 she joined the faculty of Iowa State University as an associate professor in the Departments of Genetics, Development and Cell Biology and Agronomy. In 2019 she was promoted to the rank of professor. In 2021, she was named Associate Dean for Research and Discovery for the Iowa State University College of Agriculture and Life Sciences and Associate Director of the Iowa Agriculture and Home Economics Experiment Station. In 2024, she joined Colorado State University as Dean of the College of Agricultural Sciences. [3]
Lawrence-Dill's research focuses on mapping genomes and gene elements, [4] [5] [6] [7] predicting protein function, [8] [9] inventing new ways to link genes to phenotypic descriptions and images, [10] [11] developing ways to compute on phenotypic descriptions, [12] [13] [14] [15] organizing broad datasets for community access and use, [16] [17] [18] and developing computational tools that enable others to do all of these sorts of analyses directly. Although research and development projects are across the plant kingdom generally, much of her work focuses on maize.
Lawrence-Dill has advanced plant scientists' ability to access plant genomics resources by sequencing and assembling genomes, annotating structural elements including genes, regulatory elements and CRISPR sites to genomes, and creating tools that enable researchers to analyze gene expression data.
Lawrence-Dill has advanced plant scientists' ability to compute on phenotype directly via connecting image-based phenotypes to genomics data, crowdsourcing for image-based machine learning, managing information for field and controlled environment high-throughput phenotyping, and computing on phenotypic descriptions.
Much of the work Lawrence-Dill has published seeks to advance data sharing to enable researchers to make use of others' findings, as some scientists harbor concerns about data sharing that those who generate materials and data will not derive prominence from downstream use and benefits derived from their own data. [19] However, generally limiting access to data prevents researchers from being able to test whether research results are reproducible. With respect to genomics data and materials, limiting access to digital sequence information (DSI) relevant to specific germplasm can keep researchers from being able to identify biological materials for novel research applications.
Lawrence-Dill regularly addresses timely topics like climate change and genetic engineering, advising colleagues to engage in discussions on these topics with colleagues in other disciplines, with policymakers, and with the general public. Her guidance focuses on finding shared values, articulating social, environmental, and economic opportunities, and appealing to a better future rather than negative consequences.
In 2016, Lawrence-Dill and sociologist Shawn Dorius began work to better understand where negative public opinions on GMOs and climate change originate. While investigating how GMOs were portrayed in US news coverage, information on Russian interference in the 2016 United States elections emerged, with English language Russian state news from RT and Sputnik being ordered to register as foreign agents. This led the team to look into news reported by RT and Sputnik, where they found their portrayal of GMO topics to be very different from that in US media. Russian state news about GMOs was almost entirely negative, with seemingly intentional mis-associations linking GMOs with controversial, unrelated, and distasteful topics (e.g., topics on abortions of Zika-infected fetuses and the Trans-Pacific Partnership). The team hypothesized that this sort of activity could aim not only to stir up controversy in the US, but that to serve economic interests in Russia given that Russia’s number two industry is agriculture.
While their findings were under peer review, the Des Moines Register released a front-page article [20] describing their findings (February 25, 2018). The researchers released a preprint of the article via the SocArXiv [21] within a day to ensure that detailed materials, methods, and interpretations of the data were fully available. A media frenzy followed with coverage in more than 80 newspapers, online websites, and radio broadcasts, with audio coverage through National Public Radio’s Marketplace (February 28, 2018) and Iowa Public Radio’s River to River (March 2, 2018). There was even a political cartoon released by Greg Kearney, [22] and Bill Gates defended GMOs via a Reddit Ask Me Anything [23] discussion in the midst of the coverage. The peer-reviewed publication [24] was accepted March 11, 2018. Subsequent to media coverage of the GMO-Russia connections, reports of other seemingly unrelated hot topics showed signs of Russian influence with apparent intention to cause discord, [25] with demonstrations of influence campaigns emerging on wide-ranging topics from energy to human rights to international trade.
Lawrence-Dill has brought together researchers across many communities to coordinate their work. This includes building consensus for standards and nomenclature, [26] [27] founding community organizations, [28] [29] and encouraging others through mentorship and training opportunities. [30]
Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms.
Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed or not, depending on whether they are inherited from the female or male parent. Genes can also be partially imprinted. Partial imprinting occurs when alleles from both parents are differently expressed rather than complete expression and complete suppression of one parent's allele. Forms of genomic imprinting have been demonstrated in fungi, plants and animals. In 2014, there were about 150 imprinted genes known in mice and about half that in humans. As of 2019, 260 imprinted genes have been reported in mice and 228 in humans.
In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".
A transposable element (TE), also transposon, or jumping gene, is a type of mobile genetic element, a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size.
Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism. Genes may direct the production of proteins with the assistance of enzymes and messenger molecules. In turn, proteins make up body structures such as organs and tissues as well as control chemical reactions and carry signals between cells. Genomics also involves the sequencing and analysis of genomes through uses of high throughput DNA sequencing and bioinformatics to assemble and analyze the function and structure of entire genomes. Advances in genomics have triggered a revolution in discovery-based research and systems biology to facilitate understanding of even the most complex biological systems such as the brain.
Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens.
Comparative genomics is a branch of biological research that examines genome sequences across a spectrum of species, spanning from humans and mice to a diverse array of organisms from bacteria to chimpanzees. This large-scale holistic approach compares two or more genomes to discover the similarities and differences between the genomes and to study the biology of the individual genomes. Comparison of whole genome sequences provides a highly detailed view of how organisms are related to each other at the gene level. By comparing whole genome sequences, researchers gain insights into genetic relationships between organisms and study evolutionary changes. The major principle of comparative genomics is that common features of two organisms will often be encoded within the DNA that is evolutionarily conserved between them. Therefore, Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved or common among species, as well as genes that give unique characteristics of each organism. Moreover, these studies can be performed at different levels of the genomes to obtain multiple perspectives about the organisms.
Paleopolyploidy is the result of genome duplications which occurred at least several million years ago (MYA). Such an event could either double the genome of a single species (autopolyploidy) or combine those of two species (allopolyploidy). Because of functional redundancy, genes are rapidly silenced or lost from the duplicated genomes. Most paleopolyploids, through evolutionary time, have lost their polyploid status through a process called diploidization, and are currently considered diploids, e.g., baker's yeast, Arabidopsis thaliana, and perhaps humans.
Phenomics is the systematic study of traits that make up an organisms phenotype, which changes over time, due to development and aging or through metamorphosis such as when a caterpillar changes into a butterfly. The term phenomics was coined by UC Berkeley and LBNL scientist Steven A. Garan. As such, it is a transdisciplinary area of research that involves biology, data sciences, engineering and other fields. Phenomics is concerned with the measurement of the phenotype where a phenome is a set of traits that can be produced by a given organism over the course of development and in response to genetic mutation and environmental influences.
Susan Randi Wessler, ForMemRS, is an American plant molecular biologist and geneticist. She is distinguished professor of genetics at the University of California, Riverside (UCR).
Mouse Genome Informatics (MGI) is a free, online database and bioinformatics resource hosted by The Jackson Laboratory, with funding by the National Human Genome Research Institute (NHGRI), the National Cancer Institute (NCI), and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). MGI provides access to data on the genetics, genomics and biology of the laboratory mouse to facilitate the study of human health and disease. The database integrates multiple projects, with the two largest contributions coming from the Mouse Genome Database and Mouse Gene Expression Database (GXD). As of 2018, MGI contains data curated from over 230,000 publications.
Gene targeting is a biotechnological tool used to change the DNA sequence of an organism. It is based on the natural DNA-repair mechanism of Homology Directed Repair (HDR), including Homologous Recombination. Gene targeting can be used to make a range of sizes of DNA edits, from larger DNA edits such as inserting entire new genes into an organism, through to much smaller changes to the existing DNA such as a single base-pair change. Gene targeting relies on the presence of a repair template to introduce the user-defined edits to the DNA. The user will design the repair template to contain the desired edit, flanked by DNA sequence corresponding (homologous) to the region of DNA that the user wants to edit; hence the edit is targeted to a particular genomic region. In this way Gene Targeting is distinct from natural homology-directed repair, during which the ‘natural’ DNA repair template of the sister chromatid is used to repair broken DNA. The alteration of DNA sequence in an organism can be useful in both a research context – for example to understand the biological role of a gene – and in biotechnology, for example to alter the traits of an organism.
Cognitive genomics is the sub-field of genomics pertaining to cognitive function in which the genes and non-coding sequences of an organism's genome related to the health and activity of the brain are studied. By applying comparative genomics, the genomes of multiple species are compared in order to identify genetic and phenotypical differences between species. Observed phenotypical characteristics related to the neurological function include behavior, personality, neuroanatomy, and neuropathology. The theory behind cognitive genomics is based on elements of genetics, evolutionary biology, molecular biology, cognitive psychology, behavioral psychology, and neurophysiology.
Molecular breeding is the application of molecular biology tools, often in plant breeding and animal breeding. In the broad sense, molecular breeding can be defined as the use of genetic manipulation performed at the level of DNA to improve traits of interest in plants and animals, and it may also include genetic engineering or gene manipulation, molecular marker-assisted selection, and genomic selection. More often, however, molecular breeding implies molecular marker-assisted breeding (MAB) and is defined as the application of molecular biotechnologies, specifically molecular markers, in combination with linkage maps and genomics, to alter and improve plant or animal traits on the basis of genotypic assays.
"Envirome" is a concept that relates the core of environmental conditions with the successful biological performance of living beings. This concept was created in genetic epidemiology, in which an envirome is defined as the total set of environmental factors, both present, and past, that affect the state, and in particular the disease state, of an organism. The study of the envirome and its effects is termed enviromics. The term was first coined in the field of psychiatric epidemiology by J.C. Anthony in 1995. More recently, use of the term has been extended to the cellular domain, where cell functional enviromics studies both the genome and envirome from a systems biology perspective. In plants, enviromics is directly related to complex ecophysiology, in which the wide environment of the plants, into an omics scale, can be dissected and understood as a mosaic of possible growing factors and the balance of diverse resources available. In ecology, this concept can be related to the Shelford's law of tolerance. The enviromics is conceived as a pillar of the Modern Plant Breeding, capable to connect the design and development of breeding goals concealing it with the agronomic targets for a climate-smart agriculture. It also has the ability to bridge the knowledge gaps between the different levels of systems biology and phenomics in the context of Gene–environment interaction.
Robert Anthony Martienssen is a British plant biologist, Howard Hughes Medical Institute–Gordon and Betty Moore Foundation investigator, and professor at Cold Spring Harbor Laboratory, US.
Model organism databases (MODs) are biological databases, or knowledgebases, dedicated to the provision of in-depth biological data for intensively studied model organisms. MODs allow researchers to easily find background information on large sets of genes, efficiently plan experiments, integrate their data with existing knowledge, and formulate new hypotheses. They allow users to analyse results and interpret datasets, and the data they generate are increasingly used to describe less well studied species. Where possible, MODs share common approaches to collect and represent biological information. For example, all MODs use the Gene Ontology (GO) to describe functions, processes and cellular locations of specific gene products. Projects also exist to enable software sharing for curation, visualization and querying between different MODs. Organismal diversity and varying user requirements however mean that MODs are often required to customize capture, display, and provision of data.
A plant genome assembly represents the complete genomic sequence of a plant species, which is assembled into chromosomes and other organelles by using DNA fragments that are obtained from different types of sequencing technology.
Robert J. Schmitz is an American plant biologist and epigenomicist at the University of Georgia where he studies the generation and phenotypic consequences of plant epialleles as well as developing new techniques to identify and study cis-regulatory sequences. He is an associate professor in the department of genetics and the UGA Foundation Endowed Pant Sciences Professor.
James C. Schnable is a plant geneticist and the Nebraska Corn Checkoff Presidential Chair at the University of Nebraska – Lincoln where his research program focuses on developing new technologies for crop genetics and breeding.