Catechin-7-O-glucoside

Last updated
Catechin-7-O-glucoside
Catechin-7-O-glucoside.svg
Names
IUPAC name
(2S,4S,5S)-2-[[(2R,3S)-2-(3,4-Dihydroxyphenyl)-3,5-dihydroxy-3,4-dihydro-2H-chromen-7-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
Other names
(2R,3S)-Catechin-7-O-β-D-glucopyranoside
Catechin 7-O-β-glucopyranoside
(+)-Catechin 7-O-β-glucoside
(+)-Catechin 7-O-beta-D-glucopyranoside
Catechin 7-glucoside
C7G
CA-G
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C21H24O11/c22-7-16-17(27)18(28)19(29)21(32-16)30-9-4-12(24)10-6-14(26)20(31-15(10)5-9)8-1-2-11(23)13(25)3-8/h1-5,14,16-29H,6-7H2/t14-,16+,17+,18-,19+,20+,21+/m0/s1
    Key: VLFIBROLAXKPQK-DPRDWZRASA-N
  • InChI=1/C21H24O11/c22-7-16-17(27)18(28)19(29)21(32-16)30-9-4-12(24)10-6-14(26)20(31-15(10)5-9)8-1-2-11(23)13(25)3-8/h1-5,14,16-29H,6-7H2/t14-,16+,17+,18-,19+,20+,21+/m0/s1
    Key: VLFIBROLAXKPQK-DPRDWZRABG
  • O(c2cc3O[C@H](c1ccc(O)c(O)c1)[C@@H](O)Cc3c(O)c2)[C@@H]4O[C@@H]([C@@H](O)[C@H](O)[C@H]4O)CO
Properties
C21H24O11
Molar mass 452.412 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Catechin-7-O-glucoside is a flavan-3-ol glycoside formed from catechin.

Contents

Natural occurrences

Catechin-7-O-glucoside can be isolated from the hemolymph of the European pine sawfly ( Neodiprion sertifer ). [1] It also occurs in relatively large quantities in cowpea (Vigna unguiculata) as the dominant flavan-3-ol monomer, and actually accounts for up to 70% of cowpea proanthocyanidins (tannins). [2]

It can also be produced by biotransformation of (+)-catechin by cultured cells of Eucalyptus perriniana . [3]

Presence in natural traditional drugs

Catechin-7-O-glucoside can be found in paeoniae radix, the crude drug made from the roots of Chinese peony ( Paeonia lactiflora ), [4] in red knotweed ( Bistorta macrophylla , also known as Polygonum macrophyllum), [5] in the stem barks of the Nepali hog plum ( Choerospondias axillaris ), [6] in the Korean plum yew ( Cephalotaxus koreana ) [7] and in Huanarpo Macho ( Jatropha macrantha ). [8] (−)-Catechin 7-O-β-D-glucopyranoside is found in the bark of Rhaphiolepis umbellata . [9]

Presence in food

It is found in buckwheat groats, [10] in the red bean (the seed of Vigna umbellata , formerly known as Phaseolus calcaratus), [11] in barley ( Hordeum vulgare L.) and malt. [12] (−)-Catechin 7-O'-β-D-glucopyranoside is found in rhubarb. [9]

Health effects

This compound has an antioxidant activity leading to a cytoprotective effect. [11] [13]

Related Research Articles

<span class="mw-page-title-main">Flavan-3-ol</span> Category of polyphenol compound

Flavan-3-ols are a subgroup of flavonoids. They are derivatives of flavans that possess a 2-phenyl-3,4-dihydro-2H-chromen-3-ol skeleton. Flavan-3-ols are structurally diverse and include a range of compounds, such as catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins, thearubigins. They play a part in plant defense and are present in the majority of plants.

<span class="mw-page-title-main">Cowpea</span> Species of plant

The cowpea is an annual herbaceous legume from the genus Vigna. Its tolerance for sandy soil and low rainfall have made it an important crop in the semiarid regions across Africa and Asia. It requires very few inputs, as the plant's root nodules are able to fix atmospheric nitrogen, making it a valuable crop for resource-poor farmers and well-suited to intercropping with other crops. The whole plant is used as forage for animals, with its use as cattle feed likely responsible for its name.

<i>Vigna</i> Genus of plants

Vigna is a genus of plants in the legume family, Fabaceae, with a pantropical distribution. It includes some well-known cultivated species, including many types of beans. Some are former members of the genus Phaseolus. According to Hortus Third, Vigna differs from Phaseolus in biochemistry and pollen structure, and in details of the style and stipules.

<span class="mw-page-title-main">Catechin</span> Type of natural phenol as a plant secondary metabolite

Catechin is a flavan-3-ol, a type of secondary metabolite providing antioxidant roles in plants. It belongs to the subgroup of polyphenols called flavonoids.

<i>Vigna umbellata</i> Species of flowering plant

Vigna umbellata, previously Phaseolus calcaratus, is a warm-season annual vine legume with yellow flowers and small edible beans. It is commonly called ricebean or rice bean. To date, it is little known, little researched and little exploited. It is regarded as a minor food and fodder crop and is often grown as intercrop or mixed crop with maize, sorghum or cowpea, as well as a sole crop in the uplands, on a very limited area. Like the other Asiatic Vigna species, ricebean is a fairly short-lived warm-season annual. Grown mainly as a dried pulse, it is also important as a fodder, a green manure and a vegetable. Ricebean is most widely grown as an intercrop, particularly of maize, throughout Indo-China and extending into southern China, India, Nepal and Bangladesh. In the past it was widely grown as lowland crop on residual soil water after the harvest of long-season rice, but it has been displaced to a great extent where shorter duration rice varieties are grown. Ricebean grows well on a range of soils. It establishes rapidly and has the potential to produce large amounts of nutritious animal fodder and high quality grain.

<i>Rhaphiolepis umbellata</i> Species of flowering plant

Rhaphiolepis umbellata is a species of flowering plant in the family Rosaceae, native to Korea, Japan and Taiwan. Growing to 1.5 m (5 ft) tall and wide, it is an evergreen shrub with glossy oval leaves, and scented white flowers, sometimes tinged with pink, in early summer.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<span class="mw-page-title-main">Prodelphinidin</span>

Prodelphinidin is a name for the polymeric tannins composed of gallocatechin. It yields delphinidin during depolymerisation under oxidative conditions.

<span class="mw-page-title-main">Taxifolin</span> Chemical compound

Taxifolin (5,7,3',4'-flavan-on-ol), also known as dihydroquercetin, belongs to the subclass flavanonols in the flavonoids, which in turn is a class of polyphenols. It is extracted from plants such as Siberian larch and milk thistle.

<span class="mw-page-title-main">Phellamurin</span> Chemical compound

Phellamurin, a flavonoid, is the 7-O-β-D-glucopyranoside, 8-C-prenyl derivative of the flavan-on-ol Aromadendrin, and may be seen as the 7-O-glucoside of noricaritin. Being a flavanonol, it has two stereocenters on the C-ring, so four stereoisomers of phellamurin are possible.

<span class="mw-page-title-main">Procyanidin C2</span> Chemical compound

Procyanidin C2 is a B type proanthocyanidin trimer, a type of condensed tannin.

<span class="mw-page-title-main">Afzelechin</span> Chemical compound

Afzelechin is a flavan-3-ol, a type of flavonoid. It can be found in Bergenia ligulata. It exists as at least 2 major epimers.

<i>Lindera aggregata</i> Species of flowering plant

Lindera aggregata is a plant species belonging to the genus Lindera.

<span class="mw-page-title-main">Procyanidin C1</span> Chemical compound

Procyanidin C1 (PCC1) is a B type proanthocyanidin. It is an epicatechin trimer found in grape, unripe apples, and cinnamon.

<span class="mw-page-title-main">Condensed tannin</span> Polymers formed by the condensation of flavans.

Condensed tannins are polymers formed by the condensation of flavans. They do not contain sugar residues.

B type proanthocyanidins are a specific type of proanthocyanidin, which are a class of flavanoids. They are oligomers of flavan-3-ols.

<span class="mw-page-title-main">Malvidin glucoside-ethyl-catechin</span> Chemical compound

Malvidin glucoside-ethyl-catechin is a flavanol-anthocyanin adduct. Flavanol-anthocyanin adducts are formed during wine ageing through reactions between anthocyanins and tannins present in grape, with yeast metabolites such as acetaldehyde. Acetaldehyde-induced reactions yield ethyl-linked species such as malvidin glucoside-ethyl-catechin.

<i>Neodiprion sertifer</i> Species of sawfly

Neodiprion sertifer, the European pine sawfly or red pine sawfly, is a sawfly species in the genus Neodiprion. Although native to Europe, it was accidentally introduced to North America in 1925.

<i>Jatropha macrantha</i> Species of plant

Jatropha macrantha, also called the huanarpo macho, is a medium size shrubby tree species in the genus Jatropha with orange red flowers. It is indigenous to Peru. It is as popular in Peru as Muira Puama is in Brazil.

Catechin-5-<i>O</i>-glucoside Chemical compound

Catechin 5-O-glucoside is a flavanol glucoside. It can be found in rhubarb and in the bark of Rhaphiolepis umbellata. It can also be formed from (+)-catechin by plant-cultured cells of Eucalyptus perriniana.

References

  1. Vihakas, Matti; Tähtinen, Petri; Ossipov, Vladimir; Salminen, Juha-Pekka (2012). "Flavonoid Metabolites in the Hemolymph of European Pine Sawfly (Neodiprion sertifer) Larvae". Journal of Chemical Ecology. 38 (5): 538–46. doi:10.1007/s10886-012-0113-y. PMID   22527054. S2CID   17064750.
  2. Ojwang, Leonnard O.; Yang, Liyi; Dykes, Linda; Awika, Joseph (2013-08-15). "Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound". Food Chemistry. 139 (1–4): 35–43. doi:10.1016/j.foodchem.2013.01.117. PMID   23561075.
  3. Otani, Shuichi; Kondo, Yoko; Asada, Yoshihisa; Furuya, Tsutomu; Hamada, Hatsuyuki; Nakajima, Nobuyoshi; Ishihara, Kohji; Hamada, Hiroki (2004). "Biotransformation of (+)-catechin by plant cultured cells of Eucalyptus perriniana". Plant Biotechnology. 21 (5): 407–409. doi: 10.5511/plantbiotechnology.21.407 .
  4. Tanaka, Takashi; Kataoka, Maki; Tsuboi, Nagisa; Kouno, Isao (2000). "New Monoterpene Glycoside Esters and Phenolic Constituents of Paeoniae Radix, and Increase of Water Solubility of Proanthocyanidins in the Presence of Paeoniflorin". Chemical and Pharmaceutical Bulletin. 48 (2): 201—207. doi: 10.1248/cpb.48.201 . PMID   10705504.
  5. Wang, S.; Wang, D.; Feng, S. (2004). "Studies on chemical constituents from Polygonum macrophyllum". Journal of Chinese Medicinal Materials. 27 (6): 411–413. PMID   15524292.
  6. Li, Chang-wei; Cui, Cheng-bin; Cai, Bing; Han, Bing; Li, Ming-ming; Fan, Ming (2009). "Flavanoidal constituents of Choerospondias axillaris and their in vitro antitumor and anti-hypoxia activities". Chinese Journal of Medicinal Chemistry. 19 (1): 48–51, 64. Archived from the original on 2014-03-09.)
  7. Yoon, Kee-dong; Jeong, Doc-gyun; Hwang, Yun-ha; Ryu, Jei-man; Kim, Jin-woong (2007). "Inhibitors of Osteoclast Differentiation from Cephalotaxus koreana". Journal of Natural Products. 70 (12): 2029–2032. doi:10.1021/np070327e. PMID   17994703.
  8. Benavides, Angelyne; Montoro, Paola; Bassarello, Carla; Piacente, Sonia; Pizza, Cosimo (2006). "Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali–quantitative analysis". Journal of Pharmaceutical and Biomedical Analysis. 40 (3): 639–647. doi:10.1016/j.jpba.2005.10.004. PMID   16300918.
  9. 1 2 Nonaka, Gen'ichiro; Ezakia, Emiko; Hayashia, Katsuya; Nishioka, Itsuo (1983). "Flavanol glucosides from rhubarb and Rhaphiolepis umbellata". Phytochemistry. 22 (7): 1659–1661. doi:10.1016/0031-9422(83)80105-8.
  10. Report on cereals at Phenol-Explorer.eu. Retrieved 18 December 2012.
  11. 1 2 Baek, Jin-a; Son, Young-ok; Fang, Minghao; Lee, Young-jae; Cho, Hyoung-kwon; Whang, Wan-kyunn; Lee, Jeong-Chae (2011). "Catechin-7-O-β-D-glucopyranoside scavenges free radicals and protects human B lymphoma BJAB cells on H2O2-mediated oxidative stress". Food Science and Biotechnology. 20: 151–158. doi:10.1007/s10068-011-0021-x. S2CID   85203995., INIST : 23809899
  12. Friedrich, Wolfgang; Galensa, Rudolf (2002). "Identification of a new flavanol glucoside from barley (Hordeum vulgare L.) and malt". European Food Research and Technology. 214 (5): 388. doi:10.1007/s00217-002-0498-x. S2CID   84221785.
  13. Kim, Ki-cheon; Kim, Jin-sook; Kang, Kyoung-ah; Kim, Jong-min; Hyun, Jin-won (2010). "Cytoprotective effects of catechin 7-O-β-D-glucopyranoside against mitochondrial dysfunction damaged by streptozotocin in RINm5F cells". Cell Biochemistry and Function. 28 (8): 651–660. doi:10.1002/cbf.1703. PMID   21104932. S2CID   205550585.