Category of preordered sets

Last updated

In mathematics, the category Ord has preordered sets as objects and order-preserving functions as morphisms. This is a category because the composition of two order-preserving functions is order preserving and the identity map is order preserving.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure (algebra), space (geometry), and change. It has no generally accepted definition.

Category theory logic and mathematics

Category theory formalizes mathematical structure and its concepts in terms of a labeled directed graph called a category, whose nodes are called objects, and whose labelled directed edges are called arrows. A category has two basic properties: the ability to compose the arrows associatively, and the existence of an identity arrow for each object. The language of category theory has been used to formalize concepts of other high-level abstractions such as sets, rings, and groups. Informally, category theory is a general theory of functions.

In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder. An antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation.

The monomorphisms in Ord are the injective order-preserving functions.

In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation X ↪ Y.

The empty set (considered as a preordered set) is the initial object of Ord, and the terminal objects are precisely the singleton preordered sets. There are thus no zero objects in Ord.

Empty set set containing no elements

In mathematics, the empty set is the unique set having no elements; its size or cardinality is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set; in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set.

In mathematics, a singleton, also known as a unit set, is a set with exactly one element. For example, the set {null} is a singleton.

The categorical product in Ord is given by the product order on the cartesian product.

In category theory, the product of two objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the cartesian product of sets, the direct product of groups, the direct product of rings and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.

In mathematics, given two partially ordered sets A and B, the product order is a partial ordering on the cartesian product A × B. Given two pairs and in A × B, one defines (a1, b1) ≤ if and only if a1a2 and b1b2.

Cartesian product set of the ordered pairs such that the first element of the pair is in the first element of the product and the second element of the pair is in the second element of the product

In set theory, a Cartesian product is a mathematical operation that returns a set from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) where aA and bB. Products can be specified using set-builder notation, e.g.

We have a forgetful functor Ord Set that assigns to each preordered set the underlying set, and to each order-preserving function the underlying function. This functor is faithful, and therefore Ord is a concrete category. This functor has a left adjoint (sending every set to that set equipped with the equality relation) and a right adjoint (sending every set to that set equipped with the total relation).

In mathematics, in the area of category theory, a forgetful functor 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case.

In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets A and B are the total functions from A to B, and the composition of morphisms is the composition of functions.

Set (mathematics) Fundamental mathematical concept related to the notions of belonging or inclusion

In mathematics, a set is a collection of distinct objects, considered as an object in its own right. For example, the numbers 2, 4, and 6 are distinct objects when considered separately, but when they are considered collectively they form a single set of size three, written {2, 4, 6}. The concept of a set is one of the most fundamental in mathematics. Developed at the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived. In mathematics education, elementary topics from set theory such as Venn diagrams are taught at a young age, while more advanced concepts are taught as part of a university degree.

2-category structure

The set of morphisms (order-preserving functions) between two preorders actually has more structure than that of a set. It can be made into a preordered set itself by the pointwise relation:

(fg) ⇔ (∀xf(x) ≤ g(x))

This preordered set can in turn be considered as a category, which makes Ord a 2-category (the additional axioms of a 2-category trivially hold because any equation of parallel morphisms is true in a posetal category).

In mathematics, specifically category theory, a posetal category, or thin category, is a category whose homsets each contain at most one morphism. As such, a posetal category amounts to a preordered class. As suggested by the name, the further requirement that the category be skeletal is often assumed for the definition of "posetal"; in the case of a category that is posetal, being skeletal is equivalent to the requirement that the only isomorphisms are the identity morphisms, equivalently that the preordered class satisfies antisymmetry and hence, if a set, is a poset.

With this 2-category structure, a pseudofunctor F from a category C to Ord is given by the same data as a 2-functor, but has the relaxed properties:

x ∈ F(A), F(idA)(x) ≃ x,
x ∈ F(A), F(gf)(x) ≃ F(g)(F(f)(x)),

where xy means xy and yx.

See also

Related Research Articles

In mathematics, specifically category theory, a functor is a map between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In various branches of mathematics, a useful construction is often viewed as the “most efficient solution” to a certain problem. The definition of a universal property uses the language of category theory to make this notion precise and to study it abstractly.

In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.

In mathematics, specifically category theory, adjunction is a relationship that two functors may have. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone-Čech compactification of a topological space in topology.

In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism IX.

In category theory, a branch of mathematics, an enriched category generalizes the idea of a category by replacing hom-sets with objects from a general monoidal category. It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms associated with every pair of objects is replaced by an object in some fixed monoidal category of "hom-objects". In order to emulate the (associative) composition of morphisms in an ordinary category, the hom-category must have a means of composing hom-objects in an associative manner: that is, there must be a binary operation on objects giving us at least the structure of a monoidal category, though in some contexts the operation may also need to be commutative and perhaps also to have a right adjoint.

In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.

In category theory, a category is considered Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.

In category theory, a branch of mathematics, a monad is an endofunctor, together with two natural transformations. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.

In category theory, an abstract branch of mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In category theory, a branch of mathematics, the functors between two given categories form a category, where the objects are the functors and the morphisms are natural transformations between the functors. Functor categories are of interest for two main reasons:

In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps or some other variant; for example, objects are often assumed to be compactly generated. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology.

In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on.