Charles DeLisi | |
---|---|
Born | Bronx, New York, U.S. | December 9, 1941
Alma mater | City College of New York (BA) New York University (PhD) |
Known for |
|
Spouse | Lynn DeLisi (m. 1968; div. 2006) |
Partner | Noreen Vasady-Kovacs (2011 - ) |
Awards | |
Scientific career | |
Fields | Biomedicine |
Institutions | |
Thesis | Thermally Induced Transitions in Collagen (1970) |
Doctoral advisor | Morris Shamos [5] |
Doctoral students | Itai Yanai [7] |
Website | www |
Charles Peter DeLisi (born December 9, 1941) is an American biomedical scientist and the Metcalf Professor of Science and Engineering at Boston University. He is noted for major contributions to the initiation of the Human Genome Project, [8] [9] for transformative academic leadership, [10] and for research contributions to mathematical and computational immunology, [11] cell biophysics, [12] genomics [13] [7] and protein [14] and nucleic acid [15] [16] structure and function. Recent activities include mathematical finance [17] and climate change. [18]
DeLisi was born in the Bronx, graduated from City College of New York (CCNY) with a Bachelor of Arts degree in history (1963), and received his Ph.D. in physics (1965 -1969) from New York University (NYU). [19]
In 1969, he joined Donald Crothers’ laboratory as a National Institutes of Health (NIH) postdoctoral research fellow in the department of chemistry at Yale University. In 1972, he was appointed a theoretical division staff scientist at Los Alamos National Laboratory, where he collaborated with George Bell, a theoretical physicist who a few years earlier had begun pioneering research in mathematical immunology. DeLisi was subsequently appointed senior scientist (1975–1982) at the National Cancer Institute, NIH, and founding head of the Section on Theoretical Immunology (1982–1985), where he and his collaborators established one of the earliest protein and DNA sequence databases fully integrated with machine learning programs for functional inference [13] and developed a number of analytical methods that proved useful in cell biology. [11] [20] [14]
In 1986, as director of the U.S. Department of Energy's (DOE) Health and Environmental Research Programs, DeLisi and his advisors proposed the Human Genome Project to the White House Office of Management and Budget and the Congress. The proposal created much controversy but received strong endorsement from Alvin Trivelpiece, who was chief of DOE's Office of Science, and William Flynn Martin, the Deputy Secretary of Energy. It was included in President Ronald Reagan's fiscal year 1987 budget submission to the Congress and was approved subsequently by both the House of Representatives and the Senate, the latter with the essential endorsement of Senator Pete Domenici (R, NM). During the spring of 1987, shortly before leaving the DOE, DeLisi established an ethical studies component of the Project. [21] The goal was to reserve 3-5% of the funding for scholars of the humanities and social sciences to develop a system of ethics that would inform decisions about the development and deployment of the radically new technologies destined to emerge from the completion of the Project.
In addition to the medical and scientific advances engendered by the Human Genome Project, it and its progeny have had a profound effect on research of cell biology. Computer scientists, in particular, transformed the topic and created a record of discovery destined to provide much material for studying the sociology of late 20th and early 21st century science. Computational and mathematical methods are now considered as important to progress in cell biology, a change that is forcing even the most conservative universities to develop new methods of biological education. [22] The Human Genome Project enabled a rapid transformation of DOE's health, environmental and energy programs, increasing considerably the importance of the Office of Health and Environmental Research.
Commemorating the significance of the Human Genome Project, the DOE installed a bronze plaque outside room F-202 at its Germantown, Maryland facility. The plaque is imprinted: [9]
From this room the Human Genome Project evolved from a mere concept to a revolutionary research program through the vision and determination of Dr. Charles DeLisi, Associate Director of Energy Research for Health and Environmental Research, 1985 to 1987.
In 1987, DeLisi returned to New York as a professor and department chairperson at the Mount Sinai School of Medicine. [23]
In 1990 DeLisi joined Boston University (BU) as dean of the College of Engineering. [24] Under his watch the College grew into a leading research institution, adding among other things Centers for Biotechnology, Photonics and Manufacturing Engineering. [25] In addition, the Biomedical Engineering (BME) department added a new dimension to the field, namely molecular and cellular engineering, and was the home of the seminal research in synthetic biology. [26]
In 1999 DeLisi initiated the nation's first Ph.D. program in bioinformatics and served as chairperson for more than a decade. [27]
In 2000, after 10 years as dean, DeLisi resumed a full-time faculty position as dean emeritus and Metcalf Professor. The lobby of the building that houses the College of Engineering Dean's Office is named in his honor, [28] as is an annual College of Engineering award lecture. [29]
DeLisi is a Fellow of the American Association for the Advancement of Science (AAAS) and of the American Institute for Medical and Biological Engineering (AIMBE). In 1999 he was awarded the CCNY Townsend Harris Medal, in 2011 he was elected an honorary citizen of Marineo, Palermo, Italy, [30] and in 2019 he was recipient of the Informa Clinical and research excellence lifetime achievement award. [31]
Bioinformatics is an interdisciplinary field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, chemistry, physics, computer science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.
Computational biology refers to the use of data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and big data, the field also has foundations in applied mathematics, chemistry, and genetics. It differs from biological computing, a subfield of computer science and engineering which uses bioengineering to build computers.
Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms, and it applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature.
The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint. It started in 1990 and was completed in 2006. It remains the world's largest collaborative biological project. Planning for the project started after it was adopted in 1984 by the US government, and it officially launched in 1990. It was declared complete on April 14, 2003, and included about 92% of the genome. Level "complete genome" was achieved in May 2021, with a remaining only 0.3% bases covered by potential issues. The final gapless assembly was finished in January 2022.
Charles R. Cantor is an American molecular geneticist who, in conjunction with David Schwartz, developed pulse field gel electrophoresis for very large DNA molecules. Cantor's three-volume book Biophysical Chemistry, co-authored with Paul Schimmel, was an influential textbook in the 1980s and 1990s.
Mark Bender Gerstein is an American scientist working in bioinformatics and Data Science. As of 2009, he is co-director of the Yale Computational Biology and Bioinformatics program.
David S. Eisenberg is an American biochemist and biophysicist best known for his contributions to structural biology and computational molecular biology. He has been a professor at the University of California, Los Angeles since the early 1970s and was director of the UCLA-DOE Institute for Genomics & Proteomics, as well as a member of the California NanoSystems Institute (CNSI) at UCLA.
David Haussler is an American bioinformatician known for his work leading the team that assembled the first human genome sequence in the race to complete the Human Genome Project and subsequently for comparative genome analysis that deepens understanding the molecular function and evolution of the genome.
Temple Ferris Smith is an emeritus professor in biomedical engineering who helped to develop the Smith-Waterman algorithm with Michael Waterman in 1981. The Smith-Waterman algorithm serves as the basis for multi sequence comparisons, identifying the segment with the maximum local sequence similarity, see sequence alignment. This algorithm is used for identifying similar DNA, RNA and protein segments. He was director of the BioMolecular Engineering Research Center at Boston University for twenty years and is now professor emeritus.
Mark Borodovsky is a Regents' Professor at the Join Wallace H. Coulter Department of Biomedical Engineering of Georgia Institute of Technology and Emory University and Director of the Center for Bioinformatics and Computational Genomics at Georgia Tech. He has also been a Chair of the Department of Bioinformatics at the Moscow Institute of Physics and Technology in Moscow, Russia from 2012 to 2022.
Richard Michael Durbin is a British computational biologist and Al-Kindi Professor of Genetics at the University of Cambridge. He also serves as an associate faculty member at the Wellcome Sanger Institute where he was previously a senior group leader.
Cyrus Homi Chothia was an English biochemist who was an emeritus scientist at the Medical Research Council (MRC) Laboratory of Molecular Biology (LMB) at the University of Cambridge and emeritus fellow of Wolfson College, Cambridge.
Cancer systems biology encompasses the application of systems biology approaches to cancer research, in order to study the disease as a complex adaptive system with emerging properties at multiple biological scales. Cancer systems biology represents the application of systems biology approaches to the analysis of how the intracellular networks of normal cells are perturbed during carcinogenesis to develop effective predictive models that can assist scientists and clinicians in the validations of new therapies and drugs. Tumours are characterized by genomic and epigenetic instability that alters the functions of many different molecules and networks in a single cell as well as altering the interactions with the local environment. Cancer systems biology approaches, therefore, are based on the use of computational and mathematical methods to decipher the complexity in tumorigenesis as well as cancer heterogeneity.
Alfonso Valencia is a Spanish biologist, ICREA Professor, current director of the Life Sciences department at Barcelona Supercomputing Center. and of Spanish National Bioinformatics Institute (INB-ISCIII). From 2015-2018, he was President of the International Society for Computational Biology. His research is focused on the study of biomedical systems with computational biology and bioinformatics approaches.
Timothy John Phillip Hubbard is a Professor of Bioinformatics at King's College London, Head of Genome Analysis at Genomics England and Honorary Faculty at the Wellcome Trust Sanger Institute in Cambridge, UK. From 1 March 2024, Hubbard became the director of Europe's Life Science Data Infrastructure ELIXIR.
Alexander George Bateman is a computational biologist and Head of Protein Sequence Resources at the European Bioinformatics Institute (EBI), part of the European Molecular Biology Laboratory (EMBL) in Cambridge, UK. He has led the development of the Pfam biological database and introduced the Rfam database of RNA families. He has also been involved in the use of Wikipedia for community-based annotation of biological databases.
Cathy H. Wu is the Edward G. Jefferson Chair and professor and director of the Center for Bioinformatics & Computational Biology (CBCB) at the University of Delaware. She is also the director of the Protein Information Resource (PIR) and the North east Bioinformatics Collaborative Steering Committee, and the adjunct professor at the Georgetown University Medical Center.
Julian John Thurstan Gough is a Group Leader in the Laboratory of Molecular Biology (LMB) of the Medical Research Council (MRC). He was previously a professor of bioinformatics at the University of Bristol.
Hanah Margalit is a Professor in the faculty of medicine at the Hebrew University of Jerusalem. Her research combines bioinformatics, computational biology and systems biology, specifically in the fields of gene regulation in bacteria and eukaryotes.
Zhiping Weng is the Li Weibo Professor of biomedical research and chair of the program in integrative biology and bioinformatics at the University of Massachusetts Medical School. She was awarded Fellowship of the International Society for Computational Biology (ISCB) in 2020 for outstanding contributions to computational biology and bioinformatics.