Chartreusin

Last updated
Chartreusin
Chartreusin.png
Names
IUPAC name
6-Hydroxy-1-methyl-10-[3-O-methyl-α-D-fucopyranosyl-(1→2)-β-D-fucopyranosyloxy]benzo[h][1]benzopyrano[5,4,3-cde][1]benzopyran-5,12-dione
Systematic IUPAC name
10-{[(2S,3R,4S,5R,6R)-3-{[(2R,3R,4S,5S,6R)-3,5-Dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6-hydroxy-1-methylbenzo[h][1]benzopyrano[5,4,3-cde][1]benzopyran-5,12-dione
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.164.122 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C32H32O14/c1-10-8-9-15-18-16(10)29(38)45-26-17-13(23(35)20(19(18)26)30(39)43-15)6-5-7-14(17)44-32-28(24(36)21(33)11(2)42-32)46-31-25(37)27(40-4)22(34)12(3)41-31/h5-9,11-12,21-22,24-25,27-28,31-37H,1-4H3/t11-,12-,21+,22+,24+,25-,27+,28-,31-,32+/m1/s1
    Key: PONPPNYZKHNPKZ-RYBWXQSLSA-N
  • InChI=1/C32H32O14/c1-10-8-9-15-18-16(10)29(38)45-26-17-13(23(35)20(19(18)26)30(39)43-15)6-5-7-14(17)44-32-28(24(36)21(33)11(2)42-32)46-31-25(37)27(40-4)22(34)12(3)41-31/h5-9,11-12,21-22,24-25,27-28,31-37H,1-4H3/t11-,12-,21+,22+,24+,25-,27+,28-,31-,32+/m1/s1
    Key: PONPPNYZKHNPKZ-RYBWXQSLBI
  • Cc1ccc2c3c1c(=O)oc4c3c(c(c5c4c(ccc5)O[C@H]6[C@@H]([C@H]([C@H]([C@H](O6)C)O)O)O[C@@H]7[C@@H]([C@H]([C@H]([C@H](O7)C)O)OC)O)O)c(=O)o2
Properties
C32H32O14
Molar mass 640.588
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chartreusin is an antibiotic originally isolated from the bacteria Streptomyces Chartreusis. The crystalline compound itself has a yellow-green colour, as per its name, and is stable at room temperature for several hours. [1] Chartreusin is chemically related to elsamitrucin, as the two share an aglycone chartarin structure, though they differ in their sugar moieties. Both chartreusin and elsamitrucin were found to have anticancer activity. [2]

Contents

Biological activity

Chartreusin was shown to be effective as an antibiotic against some gram-positive species, as well as mycobacteria. This compound has also displayed anti-cancer activity, particularly against certain melanomas and leukemia in mice. [3] However, this effect could only be observed in-vivo when the antibiotic was administered via intraperitoneal injection. Chartreusin administered by intravenous therapy was ineffective, as the compound would be excreted through the bile. [4]

This compound is believed to function by binding directly to DNA, preventing its replication. It binds cooperatively and has a high affinity for alternating AT or GC sequences. Upon binding, Chartreusin may inhibit the relaxation of negatively supercoiled DNA, or induce strand scission. [5] Consequently, this compound has been shown to interfere with mammalian cells' progression through the cell cycle. In the presence of chartreusin, cells in the G1 stage move more slowly into S, while cells in the G2 stage are entirely prevented from moving on to mitosis. Those cells already in the S phase are likely to experience lethal effects, though Chartreusin's lethality is also a function of both dosage and duration of exposure. [4]

Pharmaceutical potential

Chartreusin is not currently considered to have significant potential as an anti-cancer drug. [2] The concentration required for the drug to inhibit cell growth is typically also cytotoxic. Among surviving cells, prolonged exposure to Chartreusin leads to irreversible inhibition of growth and damage to DNA. [3] [4] Fortunately, the chemically similar elsamitrucin, or elsamicin A, has a better outlook.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Chemotherapy</span> Treatment of cancer using drugs that inhibit cell division or kill cells

Chemotherapy is a type of cancer treatment that uses one or more anti-cancer drugs as part of a standardized chemotherapy regimen. Chemotherapy may be given with a curative intent or it may aim to prolong life or to reduce symptoms. Chemotherapy is one of the major categories of the medical discipline specifically devoted to pharmacotherapy for cancer, which is called medical oncology.

DNA topoisomerases are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in DNA arise due to the intertwined nature of its double-helical structure, which, for example, can lead to overwinding of the DNA duplex during DNA replication and transcription. If left unchanged, this torsion would eventually stop the DNA or RNA polymerases involved in these processes from continuing along the DNA helix. A second topological challenge results from the linking or tangling of DNA during replication. Left unresolved, links between replicated DNA will impede cell division. The DNA topoisomerases prevent and correct these types of topological problems. They do this by binding to DNA and cutting the sugar-phosphate backbone of either one or both of the DNA strands. This transient break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed. Since the overall chemical composition and connectivity of the DNA do not change, the DNA substrate and product are chemical isomers, differing only in their topology.

<span class="mw-page-title-main">Immunosuppressive drug</span> Drug that inhibits activity of immune system

Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system.

<span class="mw-page-title-main">Neomycin</span> Type of antibiotic

Neomycin is an aminoglycoside antibiotic that displays bactericidal activity against gram-negative aerobic bacilli and some anaerobic bacilli where resistance has not yet arisen. It is generally not effective against gram-positive bacilli and anaerobic gram-negative bacilli. Neomycin comes in oral and topical formulations, including creams, ointments, and eyedrops. Neomycin belongs to the aminoglycoside class of antibiotics that contain two or more amino sugars connected by glycosidic bonds.

<span class="mw-page-title-main">Aminoglycoside</span> Antibacterial drug

Aminoglycoside is a medicinal and bacteriologic category of traditional Gram-negative antibacterial medications that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside (sugar). The term can also refer more generally to any organic molecule that contains amino sugar substructures. Aminoglycoside antibiotics display bactericidal activity against Gram-negative aerobes and some anaerobic bacilli where resistance has not yet arisen but generally not against Gram-positive and anaerobic Gram-negative bacteria.

<span class="mw-page-title-main">T-2 mycotoxin</span> Chemical compound

T-2 mycotoxin is a trichothecene mycotoxin. It is a naturally occurring mold byproduct of Fusarium spp. fungus which is toxic to humans and animals. The clinical condition it causes is alimentary toxic aleukia and a host of symptoms related to organs as diverse as the skin, airway, and stomach. Ingestion may come from consumption of moldy whole grains. T-2 can be absorbed through human skin. Although no significant systemic effects are expected after dermal contact in normal agricultural or residential environments, local skin effects can not be excluded. Hence, skin contact with T-2 should be limited.

<span class="mw-page-title-main">Doxorubicin</span> Chemotherapy medication

Doxorubicin, sold under the brand name Adriamycin among others, is a chemotherapy medication used to treat cancer. This includes breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. It is often used together with other chemotherapy agents. Doxorubicin is given by injection into a vein.

An antimetabolite is a chemical that inhibits the use of a metabolite, which is another chemical that is part of normal metabolism. Such substances are often similar in structure to the metabolite that they interfere with, such as the antifolates that interfere with the use of folic acid; thus, competitive inhibition can occur, and the presence of antimetabolites can have toxic effects on cells, such as halting cell growth and cell division, so these compounds are used as chemotherapy for cancer.

<span class="mw-page-title-main">Daunorubicin</span> Chemotherapy medication mostly used for leukaemias

Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically it is used for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. It is administered by injection into a vein. A liposomal formulation known as liposomal daunorubicin also exists.

<span class="mw-page-title-main">Dactinomycin</span> Chemical compound

Dactinomycin, also known as actinomycin D, is a chemotherapy medication used to treat a number of types of cancer. This includes Wilms tumor, rhabdomyosarcoma, Ewing's sarcoma, trophoblastic neoplasm, testicular cancer, and certain types of ovarian cancer. It is given by injection into a vein.

<span class="mw-page-title-main">Tetracycline antibiotics</span> Type of broad-spectrum antibiotic

Tetracyclines are a group of broad-spectrum antibiotic compounds that have a common basic structure and are either isolated directly from several species of Streptomyces bacteria or produced semi-synthetically from those isolated compounds. Tetracycline molecules comprise a linear fused tetracyclic nucleus to which a variety of functional groups are attached. Tetracyclines are named after their four ("tetra-") hydrocarbon rings ("-cycl-") derivation ("-ine"). They are defined as a subclass of polyketides, having an octahydrotetracene-2-carboxamide skeleton and are known as derivatives of polycyclic naphthacene carboxamide. While all tetracyclines have a common structure, they differ from each other by the presence of chloride, methyl, and hydroxyl groups. These modifications do not change their broad antibacterial activity, but do affect pharmacological properties such as half-life and binding to proteins in serum.

<span class="mw-page-title-main">Bafilomycin</span> Chemical compound

The bafilomycins are a family of macrolide antibiotics produced from a variety of Streptomycetes. Their chemical structure is defined by a 16-membered lactone ring scaffold. Bafilomycins exhibit a wide range of biological activity, including anti-tumor, anti-parasitic, immunosuppressant and anti-fungal activity. The most used bafilomycin is bafilomycin A1, a potent inhibitor of cellular autophagy. Bafilomycins have also been found to act as ionophores, transporting potassium K+ across biological membranes and leading to mitochondrial damage and cell death.

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are broken into two broad subtypes: type I topoisomerases (TopI) and type II topoisomerases (TopII). Topoisomerase plays important roles in cellular reproduction and DNA organization, as they mediate the cleavage of single and double stranded DNA to relax supercoils, untangle catenanes, and condense chromosomes in eukaryotic cells. Topoisomerase inhibitors influence these essential cellular processes. Some topoisomerase inhibitors prevent topoisomerases from performing DNA strand breaks while others, deemed topoisomerase poisons, associate with topoisomerase-DNA complexes and prevent the re-ligation step of the topoisomerase mechanism. These topoisomerase-DNA-inhibitor complexes are cytotoxic agents, as the un-repaired single- and double stranded DNA breaks they cause can lead to apoptosis and cell death. Because of this ability to induce apoptosis, topoisomerase inhibitors have gained interest as therapeutics against infectious and cancerous cells.

<span class="mw-page-title-main">Staurosporine</span> Chemical compound

Staurosporine is a natural product originally isolated in 1977 from the bacterium Streptomyces staurosporeus. It was the first of over 50 alkaloids to be isolated with this type of bis-indole chemical structure. The chemical structure of staurosporine was elucidated by X-ray analysis of a single crystal and the absolute stereochemical configuration by the same method in 1994.

<span class="mw-page-title-main">Anthramycin</span> Chemical compound

Anthramycin is a pyrrolobenzodiazepine antibiotic with antitumor activity. First derived from the thermophilic actinomycete Streptomyces refuineus by M. D. Tendler and S Korman in the 1950s, it was first successfully synthesized in a laboratory setting by Leimgruber et al. in 1965. Due to the unstable nature of the chemical structure, characterization of the species was done on its epimer, anthrmycin-11-methyl-ether. This derivative can be formed by recrystallization of anthramycin from hot methanol.

The duocarmycins are members of a series of related natural products first isolated from Streptomyces bacteria in 1978. They are notable for their extreme cytotoxicity and thus represent a class of exceptionally potent antitumour antibiotics.

<span class="mw-page-title-main">Nourseothricin</span> Chemical compound

Nourseothricin (NTC) is a member of the streptothricin-class of aminoglycoside antibiotics produced by Streptomyces species. Chemically, NTC is a mixture of the related compounds streptothricin C, D, E, and F. NTC inhibits protein synthesis by inducing miscoding. It is used as a selection marker for a wide range of organisms including bacteria, yeast, filamentous fungi, and plant cells. It is not known to have adverse side-effects on positively selected cells, a property cardinal to a selection drug.

Streptomyces chartreusis is a bacterium species from the genus of Streptomyces which has been isolated from soil in Africa. Streptomyces chartreusis produces N-deacyltunicamycin, elsamicin A, aminoacylase and chartreusin.

Induced cell cycle arrest is the use of a chemical or genetic manipulation to artificially halt progression through the cell cycle. Cellular processes like genome duplication and cell division stop. It can be temporary or permanent. It is an artificial activation of naturally occurring cell cycle checkpoints, induced by exogenous stimuli controlled by an experimenter.

References

  1. Leach, Byron E.; Calhoun, Kenneth M.; Johnson, LeRoy E.; Teeters, Charlotte M.; Jackson, William G. (August 1953). "Chartreusin, a New Antibiotic Produced by Streptomyces chartreusis, a New Species". Journal of the American Chemical Society. 75 (16): 4011–4012. doi:10.1021/ja01112a040. ISSN   0002-7863.
  2. 1 2 Salas, X.; Portugal, J. (1991-11-04). "Map of chartreusin and elsamicin binding sites on DNA". FEBS Letters. 292 (1–2): 223–228. doi:10.1016/0014-5793(91)80872-Z. PMID   1959610. S2CID   28468518.
  3. 1 2 "Biological and Biochemical Effects of Chartreusin on Mammalian Cells". aacrjournals.org. Retrieved 2022-12-06.
  4. 1 2 3 "Effects of Chartreusin on Cell Survival and Cell Cycle Progression". aacrjournals.org. Retrieved 2022-12-06.
  5. Krueger, William C.; Pschigoda, Loraine M.; Moscowitz, Albert (1986). "The binding of the antitumor antibiotic chartreusin to poly(dA-dT)poly(dA-dT), poly(dG-dC)poly(dG-dC), calf thymus DNA, transfer RNA, and ribosomal RNA". The Journal of Antibiotics. 39 (9): 1298–1303. doi: 10.7164/antibiotics.39.1298 . ISSN   0021-8820. PMID   3781929.