Chlorinated polyvinyl chloride

Last updated
Chlorinated polyvinyl chloride
Names
Other names
Polychloroethylene, Chlorinated PVC
Identifiers
AbbreviationsCPVC, PVC-C
ChemSpider
  • None
ECHA InfoCard 100.122.975 OOjs UI icon edit-ltr-progressive.svg
Properties
(C9H11Cl7)n, [1] for 67% Cl polymer
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Chlorinated polyvinyl chloride
Material type Thermoplastic
Physical properties
Density (ρ)1.56 g/cm3
Water absorptionEquilibrium (ASTM)0.04–0.40
Mechanical properties
Young's modulus (E)2.9–3.4  G Pa
Tensile strength (σt)50–80  M Pa
Elongation (ε)at break 20–40%
Notch test 2–5  k J/m2
Thermal properties
Melting temperature (Tm)150 °C[ citation needed ]
Glass transition temperature (Tg)106–115 °C
Vicat softening point—50 N (Vicat B)106–115 °C
Thermal conductivity (k)0.16 W/(m·K)
Linear thermal expansion coefficient (α)8×10−5  K −1
Specific heat capacity (c)0.9  kJ/(kg·K)
Economics
Price
  • $2.50–3.02/ft
  • €0.5–1.25/kg
CPVC sprinkler pipe inside a firestop mock-up Cpvc sprinkler rohr kanadische holzkabache.jpg
CPVC sprinkler pipe inside a firestop mock-up

Chlorinated polyvinyl chloride (CPVC) is a thermoplastic produced by chlorination of polyvinyl chloride (PVC) resin. CPVC is significantly more flexible than PVC, and can also withstand higher temperatures. Uses include hot and cold water delivery pipes and industrial liquid handling. CPVC, like PVC, is deemed safe for the transport and use of potable water.[ citation needed ]

Contents

History

Genova Products located in Michigan initially created the first CPVC tubing and fittings for hot- and cold-water distribution systems in the early 1960s.[ citation needed ] The original tetrahydrofuran (THF) / methyl ethyl ketone (MEK) formulas for CPVC cements were developed by Genova in conjunction with the B.F. Goodrich Company, the original developer of the CPVC resin.[ citation needed ]

Production process

Chlorinated polyvinyl chloride (CPVC) is PVC that has been chlorinated via a free radical chlorination reaction. This reaction is typically initiated by application of thermal or UV energy utilizing various approaches. In the process, chlorine gas is decomposed into free radical chlorine which is then reacted with PVC in a post-production step, essentially replacing a portion of the hydrogen in the PVC with chlorine.

Depending on the method, a varying amount of chlorine is introduced into the polymer allowing for a measured way to fine-tune the final properties. The chlorine content may vary from manufacturer to manufacturer; the base can be as low as PVC 56.7% to as high as 74% by mass, although most commercial resins have chlorine content from 63% to 69%.[ citation needed ] As the chlorine content in CPVC is increased, its glass transition temperature (Tg) increases significantly. Under normal operating conditions, CPVC becomes unstable at 70% mass of chlorine.

Various additives are also introduced into the resin in order to make the material more receptive to processing. These additives may consist of stabilizers, impact modifiers, pigments and lubricants.

Physical properties

CPVC shares most of the features and properties of PVC, but also has some key differences. CPVC is readily workable, including machining, welding, and forming. Because of its excellent corrosion resistance at elevated temperatures, CPVC is ideally suited for self-supporting constructions where temperatures up to 200 °F (93 °C) are present. The ability to bend, shape, and weld CPVC enables its use in a wide variety of processes and applications. It exhibits fire-retardant properties.

Comparison to polyvinyl chloride (PVC)

Heat resistance

CPVC can withstand corrosive water at temperatures greater than PVC, typically greater by 40–50 °C (greater by 72–90 °F), contributing to its popularity as a material for water-piping systems in residential and commercial construction. CPVC maximal operating temperature peaks at 200 °F (93 °C).

Mechanical properties

The principal mechanical difference between CPVC and PVC is that CPVC is significantly more ductile, allowing greater flexure and crush resistance. Additionally, the mechanical strength of CPVC makes it a viable candidate to replace many types of metal pipe in conditions where metal's susceptibility to corrosion limits its use.

Properties of CPVC and PVC
Schedule 40 Schedule 80
CPVCPVCCPVCPVC
Max. working pressure450 psi (3,100 kPa)450 psi (3,100 kPa)630 psi (4,300 kPa)630 psi (4,300 kPa)
Tensile strength8,200 psi (57,000 kPa)7,500 psi (52,000 kPa)8,200 psi (57,000 kPa)7,500 psi (52,000 kPa)
Temperature limits33–200 °F (1–93 °C)33–140 °F (1–60 °C)33–200 °F (1–93 °C)33–140 °F (1–60 °C)

Additionally, CPVC is a thermoplastic and as such has greater insulation than that of copper pipes. Due to this increased insulation, CPVC experiences less condensation formation and better maintains water temperature for both hot and cold applications.

Bonding

Due to its specific composition, bonding CPVC requires a specialized solvent cement different from PVC, with high-strength formulas being first introduced in 1965 by Genova Products, followed by alternatives such as IPS's Weld-On line.

Primers, solvent cements, and bonding agents for CPVC reportedly must meet ASTM F493 specifications, differing from PVC solvent cements that must adhere to ASTM D2564 standards.

Fire properties

CPVC is similar to PVC in resistance to fire. It is typically very difficult to ignite and tends to self-extinguish when not in a directly applied flame.

Due to its chlorine content, the incineration of CPVC, either in a fire or in an industrial disposal process, can result in the creation of chlorinated dioxins and the similarly dangerous polychlorinated dibenzofurans, both which bioaccumulate.

Related Research Articles

<span class="mw-page-title-main">Polyvinyl chloride</span> Common synthetic polymer

Polyvinyl chloride (alternatively: poly(vinyl chloride), colloquial: vinyl or polyvinyl; abbreviated: PVC) is the world's third-most widely produced synthetic polymer of plastic (after polyethylene and polypropylene). About 40 million tons of PVC are produced each year.

<span class="mw-page-title-main">Polyethylene</span> Most common thermoplastic polymer

Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical reducing agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

<span class="mw-page-title-main">Polyvinyl fluoride</span> Chemical compound

Polyvinyl fluoride (PVF) or –(CH2CHF)n– is a polymer material mainly used in the flammability-lowering coatings of airplane interiors and photovoltaic module backsheets. It is also used in raincoats and metal sheeting. Polyvinyl fluoride is a thermoplastic fluoropolymer with a repeating vinyl fluoride unit, and it is structurally very similar to polyvinyl chloride.

<span class="mw-page-title-main">Flat roof</span> Type of roof

A flat roof is a roof which is almost level in contrast to the many types of sloped roofs. The slope of a roof is properly known as its pitch and flat roofs have up to approximately 10°. Flat roofs are an ancient form mostly used in arid climates and allow the roof space to be used as a living space or a living roof. Flat roofs, or "low-slope" roofs, are also commonly found on commercial buildings throughout the world. The U.S.-based National Roofing Contractors Association defines a low-slope roof as having a slope of 3 in 12 (1:4) or less.

<span class="mw-page-title-main">Ethylene-vinyl acetate</span> Chemical compound

Ethylene-vinyl acetate (EVA), also known as poly(ethylene-vinyl acetate) (PEVA), is a copolymer of ethylene and vinyl acetate. The weight percent of vinyl acetate usually varies from 10 to 50%, with the remainder being ethylene. There are three different types of EVA copolymer, which differ in the vinyl acetate (VA) content and the way the materials are used.

<span class="mw-page-title-main">High-density polyethylene</span> Class of polyethylenes

High-density polyethylene (HDPE) or polyethylene high-density (PEHD) is a thermoplastic polymer produced from the monomer ethylene. It is sometimes called "alkathene" or "polythene" when used for HDPE pipes. With a high strength-to-density ratio, HDPE is used in the production of plastic bottles, corrosion-resistant piping, geomembranes and plastic lumber. HDPE is commonly recycled, and has the number "2" as its resin identification code.

<span class="mw-page-title-main">Vinyl siding</span> Plastic exterior siding for buildings

Vinyl siding is plastic exterior siding for houses and small apartment buildings, used for decoration and weatherproofing, imitating wood clapboard, batten board and batten or shakes, and used instead of other materials such as aluminum or fiber cement siding. It is an engineered product, manufactured primarily from polyvinyl chloride (PVC) resin. In the UK and New Zealand a similar material is known as uPVC weatherboarding.

<span class="mw-page-title-main">Waterproofing</span> Process of making an object or structure waterproof or water-resistant

Waterproofing is the process of making an object, person or structure waterproof or water-resistant so that it remains relatively unaffected by water or resisting the ingress of water under specified conditions. Such items may be used in wet environments or underwater to specified depths.

Cross-linked polyethylene, commonly abbreviated PEX, XPE or XLPE, is a form of polyethylene with cross-links. It is used predominantly in building services pipework systems, hydronic radiant heating and cooling systems, domestic water piping, insulation for high tension electrical cables, and baby play mats. It is also used for natural gas and offshore oil applications, chemical transportation, and transportation of sewage and slurries. PEX is an alternative to polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC) or copper tubing for use as residential water pipes.

<span class="mw-page-title-main">Heat-shrink tubing</span> Shrinkable plastic tube used to insulate wires

Heat-shrink tubing is a shrinkable plastic tube used to insulate wires, providing abrasion resistance and environmental protection for stranded and solid wire conductors, connections, joints and terminals in electrical wiring. It can also be used to repair the insulation on wires or to bundle them together, to protect wires or small parts from minor abrasion, and to create cable entry seals, offering environmental sealing protection. Heat-shrink tubing is ordinarily made of a polyolefin, which shrinks radially when heated, to between one-half and one-sixth of its diameter.

<span class="mw-page-title-main">Pipe (fluid conveyance)</span> Tubular section or hollow cylinder

A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipe is far stiffer per unit weight than solid members.

<span class="mw-page-title-main">Piping and plumbing fitting</span> Connecting pieces in pipe systems

A fitting or adapter is used in pipe systems to connect sections of pipe or tube, adapt to different sizes or shapes, and for other purposes such as regulating fluid flow. These fittings are used in plumbing to manipulate the conveyance of fluids such as water for potatory, irrigational, sanitary, and refrigerative purposes, gas, petroleum, liquid waste, or any other liquid or gaseous substances required in domestic or commercial environments, within a system of pipes or tubes, connected by various methods, as dictated by the material of which these are made, the material being conveyed, and the particular environmental context in which they will be used, such as soldering, mortaring, caulking, plastic welding, welding, friction fittings, threaded fittings, and compression fittings.

<span class="mw-page-title-main">Plastic pipework</span> Tubular section or hollow cylinder made of plastic

Plastic pipe is a tubular section, or hollow cylinder, made of plastic. It is usually, but not necessarily, of circular cross-section, used mainly to convey substances which can flow—liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipes are far stiffer per unit weight than solid members.

FRP is a modern composite material of construction for chemical plant, pulp and paper mill, and food and pharmaceutical equipment like tanks and vessels. Chemical equipment that range in size from less than a metre to 20 metres are fabricated using FRP as material of construction.

<span class="mw-page-title-main">Twinwall plastic</span>

Twin-wall plastic, specifically twin-wall polycarbonate, is an extruded multi-wall polymer product created for applications where its strength, thermally insulative properties, and moderate cost are ideal. Polycarbonate, which is most commonly formed through the reaction of Bisphenol A and Carbonyl Chloride, is an extremely versatile material. It is significantly lighter than glass, while managing to be stronger, more flexible, and more impact resistant. Twin-wall polycarbonate is used most commonly for green houses, where it can support itself in a structurally sound configuration, limit the amount of UV light due to its nominal translucence, and can withstand the rigors of daily abuse in an outdoor environment. The stagnant air in the cellular space between sheets provides insulation, and additional cell layers can be extruded to enhance insulative properties at the cost of light transmission.

<span class="mw-page-title-main">Acrylonitrile styrene acrylate</span> Chemical compound

Acrylonitrile styrene acrylate (ASA), also called acrylic styrene acrylonitrile, is an amorphous thermoplastic developed as an alternative to acrylonitrile butadiene styrene (ABS), that has improved weather resistance. It is an acrylate rubber-modified styrene acrylonitrile copolymer. It is used for general prototyping in 3D printing, where its UV resistance and mechanical properties make it an excellent material for use in fused filament fabrication printers, particularly for outdoor applications. ASA is also widely used in the automotive industry.

Radio-frequency welding, also known as dielectric welding and high-frequency welding, is a plastic welding process that utilizes high-frequency electric fields to induce heating and melting of thermoplastic base materials. The electric field is applied by a pair of electrodes after the parts being joined are clamped together. The clamping force is maintained until the joint solidifies. Advantages of this process are fast cycle times, automation, repeatability, and good weld appearance. Only plastics which have dipoles can be heated using radio waves and therefore not all plastics are able to be welded using this process. Also, this process is not well suited for thick or overly complex joints. The most common use of this process is lap joints or seals on thin plastic sheets or parts.

References

  1. Felder, Richard M.; Rousseau, Ronald W. (15 December 2004). Elementary Principles of Chemical Processes. p. 581. ISBN   978-0471687573.