Chlormequat

Last updated
Chlormequat
Chlormequat structure.svg
Chlormequat.png
Names
Preferred IUPAC name
2-Chloro-N,N,N-trimethylethan-1-aminium
Other names
Chlorocholine; Chlorcholine
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C5H13ClN/c1-7(2,3)5-4-6/h4-5H2,1-3H3/q+1
    Key: JUZXDNPBRPUIOR-UHFFFAOYSA-N
  • InChI=1/C5H13ClN/c1-7(2,3)5-4-6/h4-5H2,1-3H3/q+1
    Key: JUZXDNPBRPUIOR-UHFFFAOYAN
  • ClCC[N+](C)(C)C
Properties
C5H13ClN
Molar mass 122.62 g·mol−1
Melting point 245 °C (decomp.)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chlormequat is an organic compound with the formula ClCH
2
CH
2
N(CH
3
)+
3
that is used as a plant growth regulator. It is typically sold as the chloride salt, chlormequat chloride [1] (C5H13Cl2N), a colorless hygroscopic crystalline substance that is soluble in water and ethanol. [2] It is an alkylating agent and a quaternary ammonium salt. Chlormequat is one of the onium-type growth regulators. [3]

Contents

Plant interactions

Chlormequat was discovered in the 1950s, and was the first known plant growth regulator. It can cause stem thickening, reduced stem height, additional root development, plant dwarfing, and increase chlorophyll concentration. [4]

Chlormequat is an inhibitor of gibberellin biosynthesis, thereby causing reduced cell elongation and thicker sturdier stalks that facilitate harvesting of cereal crops. [5] It can also be used as an adjuvant for herbicides by retarding their oxidative disposal by plants. This is due to cytochrome P450-inhibition. [3] [2]

Regulation and toxicity

In the United States, chlormequat is classified as a low risk plant growth regulator and it is registered for use on ornamental plants grown in greenhouses, nurseries, and shadehouses. [6] The LD50 (rat, oral) is approximately 670 mg/kg. [2] Exposure to high levels of chlormequat has been linked to developmental toxicity in animal models. [7] [8]

Chlormequat has not previously been registered for use on food crops in the United States. In April 2023, the U.S. Environmental Protection Agency proposed allowing the use of the chemical on food crops such as barley, oat, triticale, and wheat. The EPA’s human health risk assessment indicated "no dietary, residential, or aggregate (i.e., combined dietary and residential exposures) risks of concern." No risks were identified by EPA to aquatic species of invertebrates, vertebrates, and plants in addition to terrestrial plants. [9]

EU Regulations

In July 2022, the EU published Regulation (EU) 2022/1290, which amended the maximum residue levels (MRLs) for chlormequat in or on certain products, based on the scientific assessment of EFSA and the international standards of the Codex Alimentarius Commission. The regulation lowered the MRL for chlormequat in citrus fruits from 2 mg/kg to 0.5 mg/kg, and also modified the MRLs for other products such as apples, pears, quinces, cherries, plums, apricots, and barley. The regulation also set a specific MRL of 0.01 mg/kg for Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) isolate BV-0004, a biological plant protection product containing chlormequat as a co-formulant. The regulation entered into force on 14 August 2022. [10]

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products, which in general protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

A biocide is defined in the European legislation as a chemical substance or microorganism intended to destroy, deter, render harmless, or exert a controlling effect on any harmful organism. The US Environmental Protection Agency (EPA) uses a slightly different definition for biocides as "a diverse group of poisonous substances including preservatives, insecticides, disinfectants, and pesticides used for the control of organisms that are harmful to human or animal health or that cause damage to natural or manufactured products". When compared, the two definitions roughly imply the same, although the US EPA definition includes plant protection products and some veterinary medicines.

<span class="mw-page-title-main">Glyphosate</span> Systemic herbicide and crop desiccant

Glyphosate is a broad-spectrum systemic herbicide and crop desiccant. It is an organophosphorus compound, specifically a phosphonate, which acts by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP). Glyphosate-based herbicides are used to kill weeds, especially annual broadleaf weeds and grasses that compete with crops. Monsanto brought it to market for agricultural use in 1974 under the trade name Roundup. Monsanto's last commercially relevant United States patent expired in 2000.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Chlorpyrifos</span> Chemical compound

Chlorpyrifos (CPS), also known as chlorpyrifos ethyl, is an organophosphate pesticide that has been used on crops, and animals in buildings, and in other settings, to kill several pests, including insects and worms. It acts on the nervous systems of insects by inhibiting the acetylcholinesterase enzyme. Chlorpyrifos was patented in 1966 by Dow Chemical Company.

<span class="mw-page-title-main">Atrazine</span> Herbicide

Atrazine is a chlorinated herbicide of the triazine class. It is used to prevent pre-emergence broadleaf weeds in crops such as maize (corn), soybean and sugarcane and on turf, such as golf courses and residential lawns. Atrazine's primary manufacturer is Syngenta and it is one of the most widely used herbicides in the United States, Canadian, and Australian agriculture. Its use was banned in the European Union in 2004, when the EU found groundwater levels exceeding the limits set by regulators, and Syngenta could not show that this could be prevented nor that these levels were safe.

<span class="mw-page-title-main">Fipronil</span> Chemical compound

Fipronil is a broad-spectrum insecticide that belongs to the phenylpyrazole insecticide class. Fipronil disrupts the insect central nervous system by blocking the ligand-gated ion channel of the GABAA receptor and glutamate-gated chloride (GluCl) channels. This causes hyperexcitation of contaminated insects' nerves and muscles. Fipronil's specificity towards insects is believed to be due to its greater binding affinity for the GABAA receptors of insects than to those of mammals, and for its action on GluCl channels, which do not exist in mammals. As of 2017, there does not appear to be significant resistance among fleas to fipronil.

Pesticide residue refers to the pesticides that may remain on or in food, after they are applied to food crops. The maximum allowable levels of these residues in foods are stipulated by regulatory bodies in many countries. Regulations such as pre-harvest intervals also prevent harvest of crop or livestock products if recently treated in order to allow residue concentrations to decrease over time to safe levels before harvest.

<span class="mw-page-title-main">Acetochlor</span> Chemical compound

Acetochlor is an herbicide developed by Monsanto Company and Zeneca. It is a member of the class of herbicides known as chloroacetanilides. Its mode of action is elongase inhibition, and inhibition of geranylgeranyl pyrophosphate (GGPP) cyclization enzymes, part of the gibberellin pathway. It carries high risks of environmental contamination.

<span class="mw-page-title-main">Dicamba</span> Chemical compound used as herbicide

Dicamba is a selective systemic herbicide first registered in 1967. Brand names for formulations of this herbicide include Dianat, Banvel, Diablo, Oracle and Vanquish. This chemical compound is a chlorinated derivative of o-anisic acid. It has been described as a "widely used, low-cost, environmentally friendly herbicide that does not persist in soils and shows little or no toxicity to wildlife and humans."

The maximum residue limit is the maximum amount of pesticide residue that is expected to remain on food products when a pesticide is used according to label directions, that will not be a concern to human health.

<span class="mw-page-title-main">Clothianidin</span> Chemical compound

Clothianidin is an insecticide developed by Takeda Chemical Industries and Bayer AG. Similar to thiamethoxam and imidacloprid, it is a neonicotinoid. Neonicotinoids are a class of insecticides that are chemically similar to nicotine, which has been used as a pesticide since the late 1700s. Clothianidin and other neonicotinoids act on the central nervous system of insects as an agonist of nAChR, the same receptor as acetylcholine, the neurotransmitter that stimulates and activating post-synaptic acetylcholine receptors but not inhibiting AChE. Clothianidin and other neonicotinoids were developed to last longer than nicotine, which is more toxic and which breaks down too quickly in the environment.

<span class="mw-page-title-main">Bensulide</span> Chemical compound

Bensulide is a selective organophosphate herbicide. It is one of a few organophosphate compounds that are used as an herbicide. Most of the others are used as insecticides. It is used on vegetable crops such as carrots, cucumbers, peppers, and melons and in cotton and turfgrass to control annual grasses such as bluegrass and crabgrass and broadleaf weeds. It is often applied before the weed seeds germinate (pre-emergence) in order to prevent them from germinating. It is available as granules or an emulsifiable concentrate. Estimates place the total use of bensulide in the United States at about 632,000 pounds annually. Application rates may be relatively heavy when it is used. The EPA classifies bensulide as a general use pesticide.

Dimethyl tetrachloroterephthalate (DCPA, with the main trade name Dacthal) is an organic compound with the formula C6Cl4(CO2CH3)2. It is the dimethyl ester of tetrachloroterephthalic acid, used as a preemergent herbicide with the ISO common name chlorthal-dimethyl. It kills annual grasses and many common weeds without killing sensitive plants such as turf grasses, flowers, fruits, vegetables, and cotton.

<span class="mw-page-title-main">2,4-Dichlorophenoxyacetic acid</span> Herbicide

2,4-Dichlorophenoxyacetic acid is an organic compound with the chemical formula Cl2C6H3OCH2CO2H. It is usually referred to by its ISO common name 2,4-D. It is a systemic herbicide that kills most broadleaf weeds by causing uncontrolled growth, but most grasses such as cereals, lawn turf, and grassland are relatively unaffected.

<span class="mw-page-title-main">Ethoprophos</span> Chemical compound

Ethoprophos (or ethoprop) is an organophosphate ester with the formula C8H19O2PS2. It is a clear yellow to colourless liquid that has a characteristic mercaptan-like odour. It is used as an insecticide and nematicide and it is an acetylcholinesterase inhibitor.

<span class="mw-page-title-main">Cyproconazole</span> Chemical compound

Cyproconazole is an agricultural fungicide of the class of azoles, used on cereal crops, coffee, sugar beet, fruit trees and grapes, and peanuts, on sod farms and golf course turf and on wood as a preservative. It has been used against powdery mildew, rust on cereals and apple scab, and applied by air or on the ground or by chemigation.

<span class="mw-page-title-main">Butylate (herbicide)</span> Weed control herbicide

Butylate or butilate is a widely used thiocarbamate herbicide. As a herbicide, it was introduced in 1962, and it quickly became the fourth most used herbicide in the US, with 28.5 million pounds used in 1974. Its use has declined significantly, to 15 million pounds in 1991 to 950 thousand pounds by 1998. It is used on corn, to control grassy and broadleaf weeds and nutsedge.

<span class="mw-page-title-main">Regulation of pesticides in the European Union</span>

A pesticide, also called Plant Protection Product (PPP), which is a term used in regulatory documents, consists of several different components. The active ingredient in a pesticide is called “active substance” and these active substances either consist of chemicals or micro-organisms. The aims of these active substances are to specifically take action against organisms that are harmful to plants. In other words, active substances are the active components against pests and plant diseases.

<span class="mw-page-title-main">Cadusafos</span> Thiosulfate insecticide against nematodes

Cadusafos is a chemical insecticide and nematicide often used against parasitic nematode populations. The compound acts as a acetylcholinesterase inhibitor. It belongs the chemical class of synthetic organic thiophosphates and it is a volatile and persistent clear liquid. It is used on food crops such as tomatoes, bananas and chickpeas. It is currently not approved by the European Commission for use in the EU. Exposure can occur through inhalation, ingestion or contact with the skin. The compound is highly toxic to nematodes, earthworms and birds but poses no carcinogenic risk to humans.

References

  1. "Chlormequat chloride". ChemSpider . Archived from the original on 13 May 2023. Retrieved 18 February 2024.
  2. 1 2 3 Wilhelm Rademacher, Lutz Brahm "Plant Growth Regulators" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2010. doi : 10.1002/14356007.a20_415.pub2
  3. 1 2 Rademacher, Wilhelm (2000). "Growth Retardants: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways". Annual Review of Plant Physiology and Plant Molecular Biology . 51 (1). Annual Reviews: 501–531. doi:10.1146/annurev.arplant.51.1.501. ISSN   1040-2519. PMID   15012200.
  4. Katel, Shambhu; Mandal, Honey Raj; Kattel, Sujata; Yadav, Shubh Pravat Singh; Lamshal, Baibhav Sharma (December 2022). "Impacts of plant growth regulators in strawberry plant: A review". Heliyon. 8 (12): e11959. doi: 10.1016/j.heliyon.2022.e11959 . PMC   9712129 . PMID   36466575.
  5. Gowariker, Vasant; Kalyani Paranjape; Sudha Gowariker; V. N. Krishnamurthy (2013). The pesticide encyclopedia. Wallingford: CABI. p. 93. ISBN   978-1780640143.
  6. "72 FR 67296 - Chlormequat Chloride Reregistration Eligibility Decision for Low Risk Pesticide; Notice of Availability". GovInfo . Archived from the original on 26 May 2022. Retrieved 18 February 2024.
  7. "Chlormequat". Food and Agricultural Organization of the United Nations.
  8. Wang, X; Weidong, H (November 2023). "Reproductive and developmental toxicity of plant growth regulators in humans and animals". Pesticide Biochemistry and Physiology. 196: 129–33. doi:10.1016/j.pestbp.2023.105640. PMID   37945238.
  9. "EPA Proposes to Register New Uses of Pesticide Chlormequat Chloride". www.epa.gov. 2024-04-26. Retrieved 2024-02-16. Before issuing this proposed registration decision, EPA assessed whether exposures to this product would cause unreasonable adverse effects to human health and the environment, as required by the Federal Insecticide, Rodenticide, and Fungicide Act (FIFRA). Based on EPA's human health risk assessment, there are no dietary, residential, or aggregate (i.e., combined dietary and residential exposures) risks of concern. EPA's ecological risk assessment identified no risks of concern to non-target, non-listed aquatic vertebrates that are listed under the Endangered Species Act, aquatic invertebrates, and aquatic and terrestrial plants.
  10. "Regulation - 2022/1290 - EN - EUR-Lex". eur-lex.europa.eu. Retrieved 2024-02-25.