Circadian Clock Associated 1

Last updated
Circadian Clock Associated 1
Identifiers
Organism A. thaliana
SymbolCCA1
RefSeq (mRNA) NM_180129.3
RefSeq (Prot) NC_003071.7
Other data
Chromosome 2: 19.25 - 19.25 Mb

Circadian Clock Associated 1 (CCA1) is a gene that is central to the circadian oscillator of angiosperms. It was first identified in Arabidopsis thaliana in 1993. CCA1 interacts with LHY and TOC1 to form the core of the oscillator system. CCA1 expression peaks at dawn. Loss of CCA1 function leads to a shortened period in the expression of many other genes. [1]

Contents

Discovery

CCA1 was first identified in Arabidopsis thaliana by Elaine M. Tobin’s lab in UCLA in 1993. [2] Tobin’s lab was studying promoter fragments that contribute to light regulation of light-harvesting Chlorophyll A/B Binding Protein (LHCB), and noticed DNA-binding activity that had affinity for a specific light-responsive fragment of the LHCB promoter. This DNA-binding activity was designated as CA-1 because the binding is mostly to cytosine and adenine-rich sequences. [3]

They found that this binding activity is necessary for phytochrome response. They later found the gene responsible for this activity by screening the Arabidopsis expression library. CCA1 referred to the CA-1 clone, and now designated the gene responsible for this DNA binding activity. [3] The evolution of circadian clocks in land plants is not understood, because circadian rhythms have received little attention in plants other than angiosperms. [4]

Function

CCA1 is part of a negative autoregulatory feedback loop that is coordinated with the daily environmental changes. Repressed in the dark by other proteins, CCA1’s expression is activated when light is sensed by the phytochrome in the plant. After translation, the CCA1 protein needs to be phosphorylated by Casein Kinase 2 (CK2). This phosphorylation is necessary for the protein to form a homodimer and to bind to its target promoters. Hyperphosphorylation, due to the overexpression of CK2, will lead to altered circadian rhythms in the mutants where CCA1 showed shorter mRNA circadian oscillation than in wild-type plants. [5] CK2 overexpression is significant in demonstrating CCA1 is part of the clock. The protein motif CCA1 uses to bind to its target DNA sequences is its Myb-like domain. CCA1 only has one Myb domain, whereas other plant and mammalian proteins could have multiple Myb domains. [3] The presence of only one Myb domain in CCA1 shows its importance influence in the circadian clock. LUX is also an important Myb transcription factor that is necessary for CCA/LHY transcription. This can also help account for problems in the repressilator model described below. [6] CCA1 is also unusual in that it has the ability to bind to asymmetric DNA sequences. CCA1 acts to suppress the expression of the DNA sequence it binds to. The stability of CCA1 protein is not affected by light or dark. It is regulated by its proteasome. Inhibiting proteasome function leads to a circadian rhythm with a longer period. [7]

CCA1 and the Arabidopsis circadian oscillator

The Arabidopsis central oscillator contains several proteins that reciprocally repress genes encoding each other to achieve a negative feedback loop necessary to generate circadian rhythms controlling many clock outputs. [8] CCA1 is a key component of this oscillator. Light induces its transcription, and mRNA levels peak at dawn along with Late Elongated Hypocotyl (LHY). [7] CCA1 and LHY associate to inhibit transcription of the Evening Complex (EC) proteins: ELF4, ELF3 and LUX, which suppresses their accumulation until dusk when LHY and CCA1 protein levels are at their lowest. The EC inhibits transcription PRR9 and TOC1 at night. [9] These, along with the remaining PRR proteins PRR7 and PRR5 are involved in suppressing CCA1 and LHY levels, which increase during the night. [10] CCA1 is further involved in maintaining this loop by inhibiting its own expression. [8]

Homologs

Paralogs

LHY (late elongated hypocotyl) also has a Myb domain and functions early in the morning. Both LHY and CCA1 have similar patterns of expression, which could be induced by light. [11] Single loss of function mutants in both genes result in seemingly identical phenotypes. But LHY cannot fully rescue the rhythm when CCA1 is absent, indicating that they may only be partially functionally redundant. Under constant light conditions, cca1 and lhy double loss of function mutants fail to maintain rhythms in clock controlled RNAs. [1]

Orthologs

The circadian oscillator in rice is similar to the Arabidopsis model, and researchers have used this model as a blueprint for understand the rice oscillator. OsLHY in rice serves a similar function as CCA1/LHY and is thus an ortholog of the gene in rice. OsPRR1 in rice is also an ortholog of TOC1. [11] PpCCA1a and PpCCA1b are orthologs of CCA1 and LHy in the moss Physcomitrella patens. They show rhythms with a period of 1 day like their angiosperm homologs in 24-hour light-dark cycles or constant darkness. However these genes show arrhythmicity in constant light conditions, in contrast to CCA1:LHY. [4]

Mutants

Mutants such as cca1-1 plants, which lack CCA1 protein, show short period phenotypes for the expression of several genes when assayed under constant light conditions. They also have a period 3 hours shorter than that of the wild-type plant, which demonstrates that expression of LHY, its homolog, cannot fully compensate for the loss of the function of CCA1. Plants that have lost function of LHY and CCA1 (lhy;cca1) lost the ability to stably maintain circadian rhythm and other output phenomena. In one study, lhy;cca1 show photoperiod- insensitive early flowering under long- day (16 hours of light/ 8 hours of dark) conditions and short day (8 hours of light, 16 hours of dark conditions), and arrhythmicity under constant light conditions. [12] However they retain some circadian function in light/dark cycles, showing that Arabidopsis circadian clock is not completely dependent on CCA1 and LHY activity. [13] Plants with non-functioning LHY and CCA1 show a wavy leaf phenotype in constant light conditions. Mutants also have increased vascular pattern complexity in their leaves, with more areoles, branch points and free ends than wild-type Arabidopsis. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Circadian rhythm</span> Natural internal process that regulates the sleep-wake cycle

A circadian rhythm, or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism and responds to the environment. Circadian rhythms are regulated by a circadian clock whose primary function is to rhythmically co-ordinate biological processes so they occur at the correct time to maximise the fitness of an individual. Circadian rhythms have been widely observed in animals, plants, fungi and cyanobacteria and there is evidence that they evolved independently in each of these kingdoms of life.

A circadian clock, or circadian oscillator, also known as one’s internal alarm clock is a biochemical oscillator that cycles with a stable phase and is synchronized with solar time.

<span class="mw-page-title-main">Cryptochrome</span> Class of photoreceptors in plants and animals

Cryptochromes are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields in a number of species. The name cryptochrome was proposed as a portmanteau combining the chromatic nature of the photoreceptor, and the cryptogamic organisms on which many blue-light studies were carried out.

The repressilator is a genetic regulatory network consisting of at least one feedback loop with at least three genes, each expressing a protein that represses the next gene in the loop. In biological research, repressilators have been used to build cellular models and understand cell function. There are both artificial and naturally-occurring repressilators. Recently, the naturally-occurring repressilator clock gene circuit in Arabidopsis thaliana and mammalian systems have been studied.

In molecular biology, an oscillating gene is a gene that is expressed in a rhythmic pattern or in periodic cycles. Oscillating genes are usually circadian and can be identified by periodic changes in the state of an organism. Circadian rhythms, controlled by oscillating genes, have a period of approximately 24 hours. For example, plant leaves opening and closing at different times of the day or the sleep-wake schedule of animals can all include circadian rhythms. Other periods are also possible, such as 29.5 days resulting from circalunar rhythms or 12.4 hours resulting from circatidal rhythms. Oscillating genes include both core clock component genes and output genes. A core clock component gene is a gene necessary for to the pacemaker. However, an output oscillating gene, such as the AVP gene, is rhythmic but not necessary to the pacemaker.

Timing of CAB expression 1 is a protein that in Arabidopsis thaliana is encoded by the TOC1 gene. TOC1 is also known as two-component response regulator-like APRR1.

<i>KaiC</i> Gene found in cyanobacteria

KaiC is a gene belonging to the KaiABC gene cluster that, together, regulate bacterial circadian rhythms, specifically in cyanobacteria. KaiC encodes for the KaiC protein, which interacts with the KaiA and KaiB proteins in a post-translational oscillator (PTO). The PTO is cyanobacteria master clock that is controlled by sequences of phosphorylation of KaiC protein. Regulation of KaiABC expression and KaiABC phosphorylation is essential for cyanobacteria circadian rhythmicity, and is particularly important for regulating cyanobacteria processes such as nitrogen fixation, photosynthesis, and cell division. Studies have shown similarities to Drosophila, Neurospora, and mammalian clock models in that the kaiABC regulation of the cyanobacteria slave circadian clock is also based on a transcription translation feedback loop (TTFL). KaiC protein has both auto-kinase and auto-phosphatase activity and functions as the circadian regulator in both the PTO and the TTFL. KaiC has been found to not only suppress kaiBC when overexpressed, but also suppress circadian expression of all genes in the cyanobacterial genome.

White Collar-1 (wc-1) is a gene in Neurospora crassa encoding the protein WC-1. WC-1 has two separate roles in the cell. First, it is the primary photoreceptor for Neurospora and the founding member of the class of principle blue light photoreceptors in all of the fungi. Second, it is necessary for regulating circadian rhythms in FRQ. It is a key component of a circadian molecular pathway that regulates many behavioral activities, including conidiation. WC-1 and WC-2, an interacting partner of WC-1, comprise the White Collar Complex (WCC) that is involved in the Neurospora circadian clock. WCC is a complex of nuclear transcription factor proteins, and contains transcriptional activation domains, PAS domains, and zinc finger DNA-binding domains (GATA). WC-1 and WC-2 heterodimerize through their PAS domains to form the White Collar Complex (WCC).

Steve A. Kay is a British-born chronobiologist who mainly works in the United States. Dr. Kay has pioneered methods to monitor daily gene expression in real time and characterized circadian gene expression in plants, flies and mammals. In 2014, Steve Kay celebrated 25 years of successful chronobiology research at the Kaylab 25 Symposium, joined by over one hundred researchers with whom he had collaborated with or mentored. Dr. Kay, a member of the National Academy of Sciences, U.S.A., briefly served as president of The Scripps Research Institute. and is currently a professor at the University of Southern California. He also served on the Life Sciences jury for the Infosys Prize in 2011.

LUX or Phytoclock1 (PCL1) is a gene that codes for LUX ARRHYTHMO, a protein necessary for circadian rhythms in Arabidopsis thaliana. LUX protein associates with Early Flowering 3 (ELF3) and Early Flowering 4 (ELF4) to form the Evening Complex (EC), a core component of the Arabidopsis repressilator model of the plant circadian clock. The LUX protein functions as a transcription factor that negatively regulates Pseudo-Response Regulator 9 (PRR9), a core gene of the Midday Complex, another component of the Arabidopsis repressilator model. LUX is also associated with circadian control of hypocotyl growth factor genes PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME INTERACTING FACTOR 5 (PIF5).

Andrew John McWalter Millar, FRS, FRSE is a Scottish chronobiologist, systems biologist, and molecular geneticist. Millar is a professor at The University of Edinburgh and also serves as its chair of systems biology. Millar is best known for his contributions to plant circadian biology; in the Steve Kay lab, he pioneered the use of luciferase imaging to identify circadian mutants in Arabidopsis. Additionally, Millar's group has implicated the ELF4 gene in circadian control of flowering time in Arabidopsis. Millar was elected to the Royal Society in 2012 and the Royal Society of Edinburgh in 2013.

Pseudo-response regulator (PRR) refers to a group of genes that regulate the circadian oscillator in plants. There are four primary PRR proteins that perform the majority of interactions with other proteins within the circadian oscillator, and another (PRR3) that has limited function. These genes are all paralogs of each other, and all repress the transcription of Circadian Clock Associated 1 (CCA1) and Late Elongated Hypocotyl (LHY) at various times throughout the day. The expression of PRR9, PRR7, PRR5 and TOC1/PRR1 peak around morning, mid-day, afternoon and evening, respectively. As a group, these genes are one part of the three-part repressilator system that governs the biological clock in plants.

The Late Elongated Hypocotyl gene (LHY), is an oscillating gene found in plants that functions as part of their circadian clock. LHY encodes components of mutually regulatory negative feedback loops with Circadian Clock Associated 1 (CCA1) in which overexpression of either results in dampening of both of their expression. This negative feedback loop affects the rhythmicity of multiple outputs creating a daytime protein complex. LHY was one of the first genes identified in the plant clock, along with TOC1 and CCA1. LHY and CCA1 have similar patterns of expression, which is capable of being induced by light. Single loss-of-function mutants in both genes result in seemingly identical phenotypes, but LHY cannot fully rescue the rhythm when CCA1 is absent, indicating that they may only be partially functionally redundant. Under constant light conditions, CCA1 and LHY double loss-of-function mutants fail to maintain rhythms in clock-controlled RNAs.

Transcription-translation feedback loop (TTFL) is a cellular model for explaining circadian rhythms in behavior and physiology. Widely conserved across species, the TTFL is auto-regulatory, in which transcription of clock genes is regulated by their own protein products.

dClock (clk) is a gene located on the 3L chromosome of Drosophila melanogaster. Mapping and cloning of the gene indicates that it is the Drosophila homolog of the mouse gene CLOCK (mClock). The Jrk mutation disrupts the transcription cycling of per and tim and manifests dominant effects.

Dmitri Nusinow is an American chronobiologist who studies plant circadian rhythms. He was born on November 7, 1976, in Inglewood, California. He currently resides in St. Louis, and his research focus includes a combination of molecular, biochemical, genetic, genomic, and proteomic tools to discover the molecular connections between signaling networks, circadian oscillators, and specific outputs. By combining these methods, he hopes to apply the knowledge elucidated from the Arabidopsis model to other plant species.

EARLY FLOWERING 3 (ELF3) is a plant-specific gene that encodes the hydroxyproline-rich glycoprotein and is required for the function of the circadian clock. ELF3 is one of the three components that make up the Evening Complex (EC) within the plant circadian clock, in which all three components reach peak gene expression and protein levels at dusk. ELF3 serves as a scaffold to bind EARLY FLOWERING 4 (ELF4) and LUX ARRHYTHMO (LUX), two other components of the EC, and functions to control photoperiod sensitivity in plants. ELF3 also plays an important role in temperature and light input within plants for circadian clock entrainment. Additionally, it plays roles in light and temperature signaling that are independent from its role in the EC.

Elaine Munsey Tobin is a professor of molecular, cell, and developmental biology at the University of California, Los Angeles (UCLA). Tobin is recognized as a Pioneer Member of the American Society of Plant Biologists (ASPB).

The chlorophyll a/b-binding protein gene, otherwise known as the CAB gene, is one of the most thoroughly characterized clock-regulated genes in plants. There are a variety of CAB proteins that are derived from this gene family. Studies on Arabidopsis plants have shed light on the mechanisms of biological clocks under the regulation of CAB genes. Dr. Steve Kay discovered that CAB was regulated by a circadian clock, which switched the gene on in the morning and off in the late afternoon. The genes code for proteins that associate with chlorophyll and xanthophylls. This association aids the absorption of sunlight, which transfers energy to photosystem II to drive photosynthetic electron transport.

Stacey Harmer is a chronobiologist whose work centers on the study of circadian rhythms in plants. Her research focuses on the molecular workings of the plant circadian clock and its influences on plant behaviors and physiology. She is a professor in the Department of Plant Biology at the University of California, Davis.

References

  1. 1 2 Green RM, Tobin EM (March 1999). "Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression". Proceedings of the National Academy of Sciences of the United States of America. 96 (7): 4176–4179. Bibcode:1999PNAS...96.4176G. doi: 10.1073/pnas.96.7.4176 . PMC   22440 . PMID   10097183.
  2. Kenigsbuch D, Tobin EM (July 1995). "A region of the Arabidopis Lhcb1*3 promoter that binds to CA-1 activity is essential for high expression and phytochrome regulation". Plant Physiology. 108 (3): 1023–1027. doi:10.1104/pp.108.3.1023. PMC   157452 . PMID   7630934.
  3. 1 2 3 Salomé PA, McClung CR (October 2004). "The Arabidopsis thaliana clock". Journal of Biological Rhythms. 19 (5): 425–435. doi:10.1177/0748730404268112. PMID   15534322. S2CID   19023414.
  4. 1 2 Okada R, Kondo S, Satbhai SB, Yamaguchi N, Tsukuda M, Aoki S (November 2009). "Functional characterization of CCA1/LHY homolog genes, PpCCA1a and PpCCA1b, in the moss Physcomitrella patens". The Plant Journal. 60 (3): 551–563. doi: 10.1111/j.1365-313X.2009.03979.x . PMID   19624471.
  5. Daniel X, Sugano S, Tobin EM (March 2004). "CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis". Proceedings of the National Academy of Sciences of the United States of America. 101 (9): 3292–3297. Bibcode:2004PNAS..101.3292D. doi: 10.1073/pnas.0400163101 . PMC   365783 . PMID   14978263.
  6. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (July 2005). "LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms". Proceedings of the National Academy of Sciences of the United States of America. 102 (29): 10387–10392. Bibcode:2005PNAS..10210387H. doi: 10.1073/pnas.0503029102 . PMC   1177380 . PMID   16006522.
  7. 1 2 Kangisser S, Yakir E, Green RM (March 2013). "Proteasomal regulation of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) stability is part of the complex control of CCA1". Plant Signaling & Behavior. 8 (3): e23206. Bibcode:2013PlSiB...8E3206K. doi:10.4161/psb.23206. PMC   3676491 . PMID   23299326.
  8. 1 2 Hemmes H, Henriques R, Jang IC, Kim S, Chua NH (December 2012). "Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms". Plant & Cell Physiology. 53 (12): 2016–2029. doi:10.1093/pcp/pcs148. PMC   3516852 . PMID   23128602.
  9. Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, et al. (January 2015). "Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature". Molecular Systems Biology. 11 (1): 776. doi:10.15252/msb.20145766. PMC   4332151 . PMID   25600997.
  10. Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, et al. (April 2012). "Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator". Science. 336 (6077): 75–79. Bibcode:2012Sci...336...75H. doi:10.1126/science.1219075. hdl: 10261/47607 . PMID   22403178. S2CID   28750899.
  11. 1 2 Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (June 2009). "CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis". Plant Physiology. 150 (2): 834–843. doi:10.1104/pp.108.133272. PMC   2689956 . PMID   19218364.
  12. 1 2 Aihara K, Naramoto S, Hara M, Mizoguchi T (2014). "Increase in vascular pattern complexity caused by mutations in LHY and CCA1 in Arabidopsis thaliana under continuous light". Plant Biotechnology. 31: 43–47. doi: 10.5511/plantbiotechnology.13.1015a .
  13. Alabadí D, Yanovsky MJ, Más P, Harmer SL, Kay SA (April 2002). "Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis". Current Biology. 12 (9): 757–761. Bibcode:2002CBio...12..757A. doi: 10.1016/s0960-9822(02)00815-1 . PMID   12007421. S2CID   10858746.