Circular triangle

Last updated
Circular triangles with a mixture of convex and concave edges Circular triangles convex concave.png
Circular triangles with a mixture of convex and concave edges

In geometry, a circular triangle is a triangle with circular arc edges.

Contents

Examples

Circular triangle example.svg
Intersection of three disks
Circular horn triangle example.svg
Circular horn triangle

The intersection of three circular disks forms a convex circular triangle. For instance, a Reuleaux triangle is a special case of this construction where the three disks are centered on the vertices of an equilateral triangle, with radius equal to the side length of the triangle. However, not every convex circular triangle is formed as an intersection of disks in this way.

A circular horn triangle has all internal angles equal to zero. [1] One way of forming some of these triangles is to place three circles, externally tangent to each other in pairs; then the central triangular region surrounded by these circles is a horn triangle. However, other horn triangles, such as the arbelos (with three collinear vertices and three semicircles as its sides) are interior to one of the three tangent circles that form it, rather than exterior to all three. [2]

Boscovich's cardioid and one of its perimeter-bisecting lines Boscovich's cardioid.svg
Boscovich's cardioid and one of its perimeter-bisecting lines

A cardioid-like circular triangle found by Roger Joseph Boscovich has three vertices equally spaced on a line, two equal semicircles on one side of the line, and a third semicircle of twice the radius on the other side of the line. The two outer vertices have the interior angle and the middle vertex has interior angle . It has the curious property that all lines through the middle vertex bisect its perimeter. [3]

Other circular triangles can have a mixture of convex and concave circular arc edges.

Characterization of angles

Three given angles , , and in the interval form the interior angles of a circular triangle (without self-intersections) if and only if they obey the system of inequalities All circular triangles with the same interior angles as each other are equivalent to each other under Möbius transformations. [4]

Isoperimetry

Circular triangles give the solution to an isoperimetric problem in which one seeks a curve of minimum length that encloses three given points and has a prescribed area. When the area is at least as large as the circumcircle of the points, the solution is any circle of that area surrounding the points. For smaller areas, the optimal curve will be a circular triangle with the three points as its vertices, and with circular arcs of equal radii as its sides, down to the area at which one of the three interior angles of such a triangle reaches zero. Below that area, the curve degenerates to a circular triangle with "antennae", straight segments reaching from its vertices to one or more of the specified points. In the limit as the area goes to zero, the circular triangle shrinks towards the Fermat point of the given three points. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Angle</span> Figure formed by two rays meeting at a common point

In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays are also known as plane angles as they lie in the plane that contains the rays. Angles are also formed by the intersection of two planes; these are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection.

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point. Because of this, the elliptic geometry described in this article is sometimes referred to as single elliptic geometry whereas spherical geometry is sometimes referred to as double elliptic geometry.

<span class="mw-page-title-main">Circular segment</span> Area bounded by a circular arc and a straight line

In geometry, a circular segment or disk segment is a region of a disk which is "cut off" from the rest of the disk by a straight line. The complete line is known as a secant, and the section inside the disk as a chord.

<span class="mw-page-title-main">Central angle</span> Measure of two radii meeting

A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one. The central angle is also known as the arc's angular distance. The arc length spanned by a central angle on a sphere is called spherical distance.

<span class="mw-page-title-main">Semicircle</span> Geometric shape

In mathematics, a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180°. It only has one line of symmetry.

<span class="mw-page-title-main">Deltoid curve</span> Roulette curve made from circles with radii that differ by factors of 3 or 1.5

In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps. In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the inside of a circle with three or one-and-a-half times its radius. It is named after the capital Greek letter delta (Δ) which it resembles.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Arbelos</span> Plane region bounded by three semicircles

In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line that contains their diameters.

<span class="mw-page-title-main">Simple polygon</span> Shape bounded by non-intersecting line segments

In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Circular sector</span> Portion of a disk enclosed by two radii and an arc

A circular sector, also known as circle sector or disk sector or simply a sector, is the portion of a disk enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle, the radius of the circle, and is the arc length of the minor sector.

<span class="mw-page-title-main">Schwarz triangle</span> Spherical triangle that can be used to tile a sphere

In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in Schwarz (1873).

<span class="mw-page-title-main">Ideal point</span> Point at infinity in hyperbolic geometry

In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line l and a point P not on l, right- and left-limiting parallels to l through P converge to l at ideal points.

<span class="mw-page-title-main">Ideal triangle</span> Type of hyperbolic triangle

In hyperbolic geometry an ideal triangle is a hyperbolic triangle whose three vertices all are ideal points. Ideal triangles are also sometimes called triply asymptotic triangles or trebly asymptotic triangles. The vertices are sometimes called ideal vertices. All ideal triangles are congruent.

<span class="mw-page-title-main">Circular arc</span> Part of a circle between two points

A circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians ; and the other arc, the major arc, subtends an angle greater than π radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle. If the length of an arc is exactly half of the circle, it is known as a semicircular arc.

The goat grazing problem is either of two related problems in recreational mathematics involving a tethered goat grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing an exterior of a circular area. For the exterior problem, the constraint that the rope can not enter the circular area dictates that the grazing area forms an involute. If the goat were instead tethered to a post on the edge of a circular path of pavement that did not obstruct the goat, the interior and exterior problem would be complements of a simple circular area.

<span class="mw-page-title-main">Ideal polyhedron</span> Shape in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

References

  1. Kasner, Edward; Kalish, Aida (1944), "The geometry of the circular horn triangle", National Mathematics Magazine , 18: 299–304, doi:10.2307/3030080, JSTOR   3030080, MR   0010442
  2. Boas, Harold P. (2006), "Reflections on the arbelos" (PDF), American Mathematical Monthly , 113 (3): 236–249, doi:10.2307/27641891, JSTOR   27641891, MR   2204487 .
  3. Banchoff, Thomas; Giblin, Peter (1994), "On the geometry of piecewise circular curves", The American Mathematical Monthly , 101 (5): 403–416, doi:10.2307/2974900, JSTOR   2974900, MR   1272938
  4. Eppstein, David; Frishberg, Daniel; Osegueda, Martha C. (June 2023), "Angles of arc-polygons and Lombardi drawings of cacti", Computational Geometry , 112: 101982, arXiv: 2107.03615 , doi:10.1016/j.comgeo.2023.101982
  5. Courant, Richard; Robbins, Herbert (1996), What is Mathematics? An Elementary Approach to Ideas and Methods (2nd ed.), Oxford University Press, pp. 378–379