In triangle geometry, the sine-triple-angle circle is one of a circle of the triangle.[1][2] Let A1 and A2 points on BC , a side of triangle ABC . And, define B1, B2, C1 and C2 similarly for CA and AB. If
then A1, A2, B1, B2, C1 and C2 lie on a circle called the sine-triple-angle circle.[3] At first, Tucker and Neuberg called the circle "cercle triplicateur".[4]
Properties
.[5] This property is the reason why the circle called "sine-triple-angle circle". But, the number of circle which cuts three sides of triangle that satisfies the ratio are countless. The centers of these circles are on the hyperbola through the incenter, three excenters, and X(49) (see below for X49).[6]
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.