Cis-3-Hexenal

Last updated
cis-3-Hexenal
Cis-3-hexenal chemical structure.png
Names
Preferred IUPAC name
(3Z)-Hex-3-enal
Other names
(Z)-Hex-3-enal
cis-3-Hexenal
Leaf aldehyde
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.027.141 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 229-854-4
KEGG
PubChem CID
UNII
  • InChI=1/C6H10O/c1-2-3-4-5-6-7/h3-4,6H,2,5H2,1H3/b4-3-
    Key: GXANMBISFKBPEX-ARJAWSKDBM
  • O=CC\C=C/CC
Properties
C6H10O
Molar mass 98.145 g·mol−1
Density 0.851 g/cm3
Boiling point 126 °C (259 °F; 399 K)
Related compounds
Related alkenals
Acrolein

Crotonaldehyde
(E,E)-2,4-Decadienal

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

cis-3-Hexenal, also known as (Z)-3-hexenal and leaf aldehyde, is an organic compound with the formula CH3CH2CH=CHCH2CHO. It is classified as an unsaturated aldehyde. It is a colorless liquid and an aroma compound with an intense odor of freshly cut grass and leaves. [1] [2]

Contents

Occurrence

It is one of the major volatile compounds in ripe tomatoes, although it tends to isomerize into the conjugated trans-2-hexenal. [3] It is produced in small amounts by most plants and it acts as an attractant to many predatory insects. It is also a pheromone in many insect species. [4]

Biosynthesis of cis-3-hexenal from linolenic acid via the hydroperoxide by the action of a lipoxygenase followed by a hydroperoxide lyase. O2aseLyaseFatty.png
Biosynthesis of cis-3-hexenal from linolenic acid via the hydroperoxide by the action of a lipoxygenase followed by a hydroperoxide lyase.

See also

Related Research Articles

In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol is oxidized to an aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine. It is one of the many oxidation reactions commonly referred to as 'activated DMSO' oxidations. The reaction is known for its mild character and wide tolerance of functional groups.

<span class="mw-page-title-main">Terpene</span> Class of oily organic compounds found in plants

Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n for n ≥ 2. Terpenes are major biosynthetic building blocks. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. In plants, terpenes and terpenoids are important mediators of ecological interactions, while some insects use some terpenes as a form of defense. Other functions of terpenoids include cell growth modulation and plant elongation, light harvesting and photoprotection, and membrane permeability and fluidity control.

<span class="mw-page-title-main">Nepetalactone</span> Chemical compound

Nepetalactone is a name for multiple iridoid analog stereoisomers. Nepetalactones are produced by Nepeta cataria (catnip) and many other plants belonging to the genus Nepeta, in which they protect these plants from herbivorous insects by functioning as insect repellents. They are also produced by many aphids, in which they are sex pheromones. Nepetalactones are cat attractants, and cause the behavioral effects that catnip induces in domestic cats. However, they affect visibly only about two thirds of adult cats. They produce similar behavioral effects in many other felids, especially in lions and jaguars. In 1941, the research group of Samuel M. McElvain was the first to determine the structures of nepetalactones and several related compounds.

1-Hexanol (IUPAC name hexan-1-ol) is an organic alcohol with a six-carbon chain and a condensed structural formula of CH3(CH2)5OH. This colorless liquid is slightly soluble in water, but miscible with diethyl ether and ethanol. Two additional straight chain isomers of 1-hexanol, 2-hexanol and 3-hexanol, exist, both of which differing by the location of the hydroxyl group. Many isomeric alcohols have the formula C6H13OH. It is used in the perfume industry.

Chemical ecology is the study of chemically mediated interactions between living organisms, and the effects of those interactions on the demography, behavior and ultimately evolution of the organisms involved. It is thus a vast and highly interdisciplinary field. Chemical ecologists seek to identify the specific molecules that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The substances that serve in such roles are typically small, readily-diffusible organic molecules, but can also include larger molecules and small peptides.

<span class="mw-page-title-main">Aroma compound</span> Chemical compound that has a smell or odor

An aroma compound, also known as an odorant, aroma, fragrance or flavoring, is a chemical compound that has a smell or odor. For an individual chemical or class of chemical compounds to impart a smell or fragrance, it must be sufficiently volatile for transmission via the air to the olfactory system in the upper part of the nose. As examples, various fragrant fruits have diverse aroma compounds, particularly strawberries which are commercially cultivated to have appealing aromas, and contain several hundred aroma compounds.

<i>cis</i>-3-Hexen-1-ol Chemical compound

cis-3-Hexen-1-ol, also known as (Z)-3-hexen-1-ol and leaf alcohol, is a colorless oily liquid with an intense grassy-green odor of freshly cut green grass and leaves. It is produced in small amounts by most plants and it acts as an attractant to many predatory insects. cis-3-Hexen-1-ol is a very important aroma compound that is used in fruit and vegetable flavors and in perfumes. The yearly production is about 30 tonnes.

<span class="mw-page-title-main">Citral</span> Chemical compound

Citral is an acyclic monoterpene aldehyde. Being a monoterpene, it is made of two isoprene units. Citral is a collective term which covers two geometric isomers that have their own separate names; the E-isomer is named geranial or citral A. The Z-isomer is named neral or citral B. These stereoisomers occur as a mixture, often not in equal proportions; e.g. in essential oil of Australian ginger, the neral to geranial ratio is 0.61.

<span class="mw-page-title-main">Humulene</span> Chemical compound

Humulene, also known as α-humulene or α-caryophyllene, is a naturally occurring monocyclic sesquiterpene (C15H24), containing an 11-membered ring and consisting of 3 isoprene units containing three nonconjugated C=C double bonds, two of them being triply substituted and one being doubly substituted. It was first found in the essential oils of Humulus lupulus (hops), from which it derives its name. Humulene is an isomer of β-caryophyllene, and the two are often found together as a mixture in many aromatic plants.

<span class="mw-page-title-main">Ocimene</span> Chemical compound

Ocimenes are a group of isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. α-Ocimene and the two β-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. α-Ocimene is cis-3,7-dimethyl-1,3,7-octatriene. β-Ocimene is trans-3,7-dimethyl-1,3,6-octatriene. β-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture, as well as the pure compounds, are oils with a pleasant odor. They are used in perfumery for their sweet herbal scent, and are believed to act as plant defense and have anti-fungal properties. Like the related acyclic terpene myrcene, ocimenes are unstable in air. Like other terpenes, the ocimenes are nearly insoluble in water, but soluble in common organic solvents.

Salicylic aldehyde (2-hydroxybenzaldehyde) is an organic compound with the formula C6H4OH(CHO). Along with 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde, it is one of the three isomers of hydroxybenzaldehyde. This colorless oily liquid has a bitter almond odor at higher concentration. Salicylaldehyde is a precursor to coumarin and a variety of chelating agents.

<span class="mw-page-title-main">3-Mercapto-3-methylbutan-1-ol</span> Chemical compound

3-Mercapto-3-methylbutan-1-ol, also known as MMB, is a common odorant found in food and cat urine. The aromas ascribed to MMB include catty, roasty, broth-like, meaty, and savory, or similar to cooked leeks.

Heptanal or heptanaldehyde is an alkyl aldehyde. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants.

<span class="mw-page-title-main">Phenylacetaldehyde</span> Chemical compound

Phenylacetaldehyde is an organic compound used in the synthesis of fragrances and polymers. Phenylacetaldehyde is an aldehyde that consists of acetaldehyde bearing a phenyl substituent; the parent member of the phenylacetaldehyde class of compounds. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an alpha-CH2-containing aldehyde and a member of phenylacetaldehydes.

Green leaf volatiles (GLV) are organic compounds released by plants. Some of these chemicals function as signaling compounds between either plants of the same species, of other species, or even different lifeforms like insects.

<span class="mw-page-title-main">Bisabolene</span> Chemical compound

Bisabolenes are a group of closely related natural chemical compounds which are classified as sesquiterpenes. Bisabolenes are produced from farnesyl pyrophosphate (FPP) and are present in the essential oils of bisabol, and of a wide variety of other plants including cubeb, lemon, and oregano. Various derivates also function as pheromones in different insects, such as stink bugs and fruit flies. Bisabolenes are produced by several fungi, though their biological role in that group of organisms remains unclear.

<span class="mw-page-title-main">Rosefuran</span> Chemical compound

Rosefuran (3-methyl-2-prenylfuran) is an organic compound, classified as a terpenoid. It is a minor constituent of the aroma of the rose. Rosefuran is a 2,3-disubstituted furan. It has an odor threshold of 200 ppb and constitutes 0.16% of Bulgarian rose oil. Rosefuran has been established as a female sex pheromone of an acarid mite, Caloglyphus sp. Concentrations of less than 100 ng of synthetic rosefuran caused sexual excitation in males of the species.

<span class="mw-page-title-main">6-Nonenal</span> Chemical compound

6-Nonenal is an organic compound with the formula C2H5CH=CH(CH2)4CHO. Other isomeric nonenal compounds are also known to exist naturally, e.g. 2-nonenal. The cis-isomer of 6-nonenal is often listed as the principal component in the aromas of muskmelon fruits. The trans-isomer is listed as an off-flavor aroma of milk foams, and thought to be a possible polypropylene odorant.

trans,cis-2,6-Nonadienal is an organic compound that is classified as a doubly unsaturated derivative of nonanal. The molecule consists of a α,β-unsaturated aldehyde with an isolated alkene group. The compound has attracted attention as the essence of cucumbers, but it is also found in bread crust and freshly cut watermelon.

<span class="mw-page-title-main">Smell of freshly cut grass</span> Odour released when grass is damaged

The smell of freshly cut grass is an odour caused by green leaf volatiles (GLVs) released when it is damaged. Mechanical damage to grass from activities such as lawnmowing results in the release of cis-3-hexenal and other compounds that contribute to a grassy or "green" smell. cis-3-Hexenal has a low odour detection threshold that humans can perceive at concentrations as low as 0.25 parts per billion.

References

  1. Cotton, Simon (2017). "Molecule of the Month: Hexenal". Chm.bris.ac.uk. doi:10.6084/m9.figshare.5245834 . Retrieved 2018-07-26.{{cite journal}}: Cite journal requires |journal= (help)
  2. Hexenal / Chemistry World, Royal Society of Chemistry, 27 November 2013
  3. Buttery, Ron G.; Teranishi, Roy; Ling, Louisa C. (1987). "Fresh tomato aroma volatiles: A quantitative study". Journal of Agricultural and Food Chemistry. 35 (4): 540–544. doi:10.1021/jf00076a025.
  4. Ashraf El-Sayed. "Pheromone database". Pherobase.com. Retrieved 2018-07-26.
  5. KenjiMatsui (2006). "Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism". Current Opinion in Plant Biology. 9 (3): 274–280. Bibcode:2006COPB....9..274M. doi:10.1016/j.pbi.2006.03.002. PMID   16595187.