Cognitive humor processing

Last updated

Cognitive humor processing refers to the neural circuitry and pathways that are involved in detecting incongruities of various situations presented in a humorous manner. Over the past decade, many studies have emerged utilizing fMRI studies to describe the neural correlates associated with how a human processes something that is considered "funny". Conceptually, humor is subdivided into two elements: cognitive and affective. The cognitive element, known as humor detection, refers to understanding the joke. Usually, this is characterized by the perceiver attempting to comprehend the disparities between the punch line and prior experience. The affective element, otherwise known as humor appreciation, is involved with enjoying the joke and producing visceral, emotional responses depending on the hilarity of the joke. [1] This ability to comprehend and appreciate humor is a vital aspect of social functioning and is a significant part of the human condition that is relevant from a very early age. Humor comprehension develops in parallel with growing cognitive and language skills during childhood, while its content is mostly influenced by social and cultural factors. A further approach is described which refers to humor as an attitude related to strains. Humorous responses when confronted with troubles are discussed as a skill often associated with high social competence. The concept of humor has also been shown to have therapeutic effects, improving physiological systems such as the immune and central nervous system. It also has been shown to help cope with stress and pain. In sum, humor proves to be a personal resource throughout the life span, and helps support the coping of everyday tasks. [2]

Contents

Development

The understanding of humor, humor production, and functionality of humor, evolves in the course of a lifetime and is essentially determined by cognitive, verbal and social abilities. Differences in humor appreciation are seen between individuals and can be attributed to the development of the neural systems underlying humor cognition during early childhood, which can continue through normal aging. [3] Recent investigations have emphasized the importance of the prefrontal cortex for humor processing. Changes to the prefrontal cortex, a consequence of normal aging, can be traced to changes in the ways individuals appreciate humor.

Early age

The cognitive component of humor is clearly exemplified during the years of childhood, which is characterized by evolving cognitive structures. As a child advances from one degree of cognition to the next, what is considered humorous and what is not should also manifest a meaningful progression. [4] Understanding any particular joke may call upon an array of cognitive processes such as condensations, awareness of incongruities (the cognitive component), and the ability to comprehend unusual verbal representations. The intrinsic gratification involved in the brain activity underlying humor is also encountered in mental activities such as solving puzzles and decoding mysteries.

Mirth response test

In September 1966 a study was conducted concerning the effects of cognition on humor comprehension during the learning years of a child. [3] The experimenters concluded that there was a positive relation between the mirth response and the degree of comprehension. Mirth is defined as any expression that reflects amusement, especially in the form of laughter. This study implied that the human's ability to comprehend text-based and visual information at a higher level resulted in a higher probability of joke or cartoon appreciation. Children from grades 2-5 were the subjects of this study. Results showed a strong positive correlation between grade level and comprehension; however the mirth response nose dives dramatically after fourth grade. This discrepancy can be explained by the principal of cognitive congruency, which states that fewer cognitive demands will elicit a lower mirth response than those that are in keeping with the complexity of the child's cognitive apparatus. Basically, if the cartoon is deemed "dumb", then they will not give a mirth response.

Frontal lobe - medial cut Frontal lobe animation.gif
Frontal lobe – medial cut

Normal aging

The frontal aging hypothesis suggests that the prefrontal cortex is particularly vulnerable to the effects of aging and implies that functions supported by the frontal lobes will be disproportionately impaired. The volume of the frontal cortex and its pronounced age-related alterations in the 5-HT2 and D2 receptor availability are the basis for this hypothesis and point to the impairment of executive functions including working memory, inhibition, and planning. [5] The ways in which executive functions were measured to testify the age-related decreases in frontal lobe activity with humor comprehension included three assessors: inhibition, set shifting, and working memory. It is seen across several studies that older adults have the capability of selecting the proper punchline of a joke in comparison to younger adults, but they are shown to select a lot fewer total selections. Older adults made more choices of logical alternatives and even showed a tendency to select more slapstick humor. [5] [6]

Old age and pathology

Though there are many studies about the developmental aspects of humor, from infancy through adolescence and adulthood, relatively little research is devoted to the study of humor with elderly (65+) populations. [6] The small pool of research out there devoted to the geriatric effect on humor cognition suggests that elderly people enjoy humor more than younger people, but they have increasing difficulties in understanding jokes. In other words, the humor appreciation component for older people is more active, but the mechanisms devoted to detection are lacking. Also, the amount of laughter exhibited by the elderly is smaller compared to young adults. In addition, the older population seems to not enjoy aggressive types of humor as much as the younger ones, and the elderly are especially sensitive to jokes referring to old age. [5] [6] It is interesting to point out the "see-saw" effect aging has in terms of the brain mechanisms underlying humor. Despite the apparent decreases in the cognitive component of humor understanding, the affective element remains steady, if not more refined and enhanced. The greater bilateral activation older adults have during cognitively demanding tasks may describe the reasons older adults seem to struggle with jokes that are graded at a higher comprehension difficulty. [1] Of course, cohort effects might play a role in an older adult's capacity to understand jokes. Perhaps several cultural factors that remain in the unconscious thinking processes are critical in understanding meaning behind some jokes.

Parkinson's disease

The neocortex, basal ganglia, diencephalon, and limbic system are affected by Parkinson's disease and are also brain areas underlying the cognitive processes of humor detection and appreciation. [7] A few studies have confirmed that patients with Parkinson's have a lower appreciation for humor as indicated by sense of humor questionnaires. This relationship is seen across multiple presentation styles including video, audio, and cartoon. Primarily, the affective part of humor, otherwise known as humor appreciation, is the main victim of PD-related brain changes. This could be linked to consequential neurological changes in the amygdala, mesolimbic dopaminergic reward system, and basal ganglia. Parkinson's patients demonstrate an inhibited ability to identify emotions of other people from both speech prosody and facial expressions. [7] The neural circuitry during the humor appreciation phase also involves the amygdala and are thought to be used during the recollection of emotional memories. The therapeutic capabilities of humor could prove to be fruitful for patients with Parkinson's disease, so it is important to identify the mechanisms underlying both humor detection and appreciation.

Mechanisms

Recent fMRI studies have begun to elucidate the cognitive and affective neural correlates associated with humor processing. But these correlates, corresponding to the stages of humor detection and humor appreciation respectively, fail to distinguish between these different logical mechanisms. A medley of studies have started to investigate the differences between these steps in humor processing and the neural circuitry that underlie these mechanisms. [8] The pun-intended phrase "the right hemisphere has the last laugh" has been adopted by scientists in this field due to its significance during appreciation, but it is widely accepted that humor appreciation and detection rely on neural circuitry from temporal and prefrontal regions from both hemispheres. These brain areas also contribute to humor processing in three distinct spatiotemporal stages: surface level semantic analysis and two phases of the interpretative integrative processes. The surface level semantic analysis is subserved by bilateral anterior temporal and left inferior prefrontal regions. Interpretive integrative processing comprises detection of ambiguity or conflict between the dominant semantic representations of the punch line and the context, which is reflected in semantic, phonological, metaphorical, and other supralinguistic integrations of the punch line with the preceding sentence. [9] In regards to the detection process, the right medial temporal gyrus is active during detection of semantic violations, and the right middle frontal gyrus is active for context monitoring. [10] The three distinct stages of neural activation during the humor process implies that humor detection and appreciation operate as separate entities and engage different brain regions in an ordered fashion. Therefore, the cascade of neural events required to understand and appreciate humor can be functionally separated, and studies have shown this distinction to be consistent across all genres of comedy. [1] During moments of humor detection, significant activation can be seen in the [[left posterior middle temporal gyrus]] and left inferior frontal gyrus. During moments of humor appreciation, increased activation in bilateral regions of insular cortex and amygdala can be observed.

Parahippocampal gyrus animation Parahippocampal gyrus animation.gif
Parahippocampal gyrus animation

Verbal

The verbal medium through which humor can be conveyed elicits a theory separate from the popular incongruity-resolution theory. The comprehension-elaboration theory is not much different from the incongruity-resolution theory, however it accounts for several incongruities found in language that are not considered humorous. Corrected misunderstandings, scientific discoveries, and silent responses to ‘bad jokes’ all present incongruity-resolution characteristics, but do not generate humor. [11] In the comprehension–elaboration theory of humor, comprehension refers to the detection and resolution of incongruities. The elaboration follows comprehension, involves the conscious generation of inferences for features not made explicit during comprehension, and elicits the unconscious or conscious feeling of amusement. Studies utilizing fMRI have shown that, like the incongruity-resolution theory, the comprehension-elaboration theory can be separated into two distinct neurological schedules of activity. During comprehension, greater activation in the left dorsal inferior frontal gyrus, left superior frontal gyrus, and left ventral stratum can be seen. During elaboration, the left ventromedial prefrontal gyrus, bilateral amygdala, and bilateral parahippocampal gyrus show greater activity. [1] [11] [12]

Non-verbal

Studies have shown that a wide area around the temporoparietal junction (temporo-occipital junction, posterior superior temporal sulcus, posterior middle temporal gyrus), temporal pole and inferior frontal gyrus (IFG) is involved in cognitive humor processing of nonverbal cartoons. [13] Studies in recent years have revealed discrete characteristic patterns of cerebral blood-oxygen-level dependent activity induced by non-verbal cartoons with different logical mechanisms. The TPJ is involved in successful incongruity resolution but not in the detection of incongruity. The extrastriate cortex is activated particularly during processing of visual puns, whereas semantic cartoons evoked activity mainly in the TPJ and precuneus. The TPJ and precuneus areas are known to be involved in mentalizing and are more strongly activated during processing of Theory of Mind cartoons compared to visual puns and semantic cartoons. [13]

Related Research Articles

<span class="mw-page-title-main">Language center</span> Speech processing areas of the brain

In neuroscience and psychology, the term language center refers collectively to the areas of the brain which serve a particular function for speech processing and production. Language is a core system that gives humans the capacity to solve difficult problems and provides them with a unique type of social interaction. Language allows individuals to attribute symbols to specific concepts, and utilize them through sentences and phrases that follow proper grammatical rules. Finally, speech is the mechanism by which language is orally expressed.

<span class="mw-page-title-main">Working memory</span> Cognitive system for temporarily holding information

Working memory is a cognitive system with a limited capacity that can hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term memory, but some theorists consider the two forms of memory distinct, assuming that working memory allows for the manipulation of stored information, whereas short-term memory only refers to the short-term storage of information. Working memory is a theoretical concept central to cognitive psychology, neuropsychology, and neuroscience.

<span class="mw-page-title-main">Broca's area</span> Speech production region in the dominant hemisphere of the hominid brain

Broca's area, or the Broca area, is a region in the frontal lobe of the dominant hemisphere, usually the left, of the brain with functions linked to speech production.

<span class="mw-page-title-main">Anterior cingulate cortex</span> Brain region

In the human brain, the anterior cingulate cortex (ACC) is the frontal part of the cingulate cortex that resembles a "collar" surrounding the frontal part of the corpus callosum. It consists of Brodmann areas 24, 32, and 33.

<span class="mw-page-title-main">Temporal lobe</span> One of the four lobes of the mammalian brain

The temporal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The temporal lobe is located beneath the lateral fissure on both cerebral hemispheres of the mammalian brain.

<span class="mw-page-title-main">Frontal lobe</span> Part of the brain

The frontal lobe is the largest of the four major lobes of the brain in mammals, and is located at the front of each cerebral hemisphere. It is parted from the parietal lobe by a groove between tissues called the central sulcus and from the temporal lobe by a deeper groove called the lateral sulcus. The most anterior rounded part of the frontal lobe is known as the frontal pole, one of the three poles of the cerebrum.

<span class="mw-page-title-main">Brodmann area 9</span> Part of the frontal cortex in the brain of humans and other primates

Brodmann area 9, or BA9, refers to a cytoarchitecturally defined portion of the frontal cortex in the brain of humans and other primates. Its cytoarchitecture is referred to as granular due to the concentration of granule cells in layer IV. It contributes to the dorsolateral and medial prefrontal cortex.

<span class="mw-page-title-main">Brodmann area 45</span> Brain area

Brodmann area 45 (BA45), is part of the frontal cortex in the human brain. It is situated on the lateral surface, inferior to BA9 and adjacent to BA46.

<span class="mw-page-title-main">Brodmann area 47</span> Brain area

Brodmann area 47, or BA47, is part of the frontal cortex in the human brain. It curves from the lateral surface of the frontal lobe into the ventral (orbital) frontal cortex. It is below areas BA10 and BA45, and beside BA11. This cytoarchitectonic region most closely corresponds to the gyral region the orbital part of inferior frontal gyrus, although these regions are not equivalent. Pars orbitalis is not based on cytoarchitectonic distinctions, and rather is defined according to gross anatomical landmarks. Despite a clear distinction, these two terms are often used liberally in peer-reviewed research journals.

<span class="mw-page-title-main">Wernicke's area</span> Speech comprehension region in the dominant hemisphere of the hominid brain

Wernicke's area, also called Wernicke's speech area, is one of the two parts of the cerebral cortex that are linked to speech, the other being Broca's area. It is involved in the comprehension of written and spoken language, in contrast to Broca's area, which is primarily involved in the production of language. It is traditionally thought to reside in Brodmann area 22, which is located in the superior temporal gyrus in the dominant cerebral hemisphere, which is the left hemisphere in about 95% of right-handed individuals and 70% of left-handed individuals.

<span class="mw-page-title-main">Inferior frontal gyrus</span> Part of the brains prefrontal cortex

The inferior frontal gyrus (IFG),, is the lowest positioned gyrus of the frontal gyri, of the frontal lobe, and is part of the prefrontal cortex.

<span class="mw-page-title-main">Superior temporal gyrus</span> One of three gyri of the temporal lobe of the brain

The superior temporal gyrus (STG) is one of three gyri in the temporal lobe of the human brain, which is located laterally to the head, situated somewhat above the external ear.

<span class="mw-page-title-main">Language processing in the brain</span> How humans use words to communicate

In psycholinguistics, language processing refers to the way humans use words to communicate ideas and feelings, and how such communications are processed and understood. Language processing is considered to be a uniquely human ability that is not produced with the same grammatical understanding or systematicity in even human's closest primate relatives.

Witzelsucht is a set of rare neurological symptoms characterized by a tendency to make puns, or tell inappropriate jokes or pointless stories in socially inappropriate situations. It makes one unable to read sarcasm.

<span class="mw-page-title-main">Superior temporal sulcus</span> Part of the brains temporal lobe

In the human brain, the superior temporal sulcus (STS) is the sulcus separating the superior temporal gyrus from the middle temporal gyrus in the temporal lobe of the brain. A sulcus is a deep groove that curves into the largest part of the brain, the cerebrum, and a gyrus is a ridge that curves outward of the cerebrum.

The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical emotion. Scientists working in this field may have training in cognitive neuroscience, neurology, neuroanatomy, psychology, music theory, computer science, and other relevant fields.

Neuroscience of multilingualism is the study of multilingualism within the field of neurology. These studies include the representation of different language systems in the brain, the effects of multilingualism on the brain's structural plasticity, aphasia in multilingual individuals, and bimodal bilinguals. Neurological studies of multilingualism are carried out with functional neuroimaging, electrophysiology, and through observation of people who have suffered brain damage.

The temporal dynamics of music and language describes how the brain coordinates its different regions to process musical and vocal sounds. Both music and language feature rhythmic and melodic structure. Both employ a finite set of basic elements that are combined in ordered ways to create complete musical or lingual ideas.

<span class="mw-page-title-main">Verbal intelligence</span> The ability to understand concepts in words

Verbal intelligence is the ability to understand and reason using concepts framed in words. More broadly, it is linked to problem solving, abstract reasoning, and working memory. Verbal intelligence is one of the most g-loaded abilities.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

References

  1. 1 2 3 4 Moran, Joseph M; Wig, Adams; Janata, Kelley (October 2003). "Neural Correlates of humor detection and appreciation". NeuroImage. 21 (3): 1055–1060. doi:10.1016/j.neuroimage.2003.10.017. PMID   15006673. S2CID   14353485 . Retrieved 25 September 2013.
  2. Wicki, Werner (2000). "Humor und Entwicklung: Eine kritische Übersicht" [Humor and development: a review]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie (in German). 32 (4): 173–185. doi:10.1026//0049-8637.32.4.173.
  3. 1 2 Zigler, Edward; Jacob Levine; Laurence Gould (September 2013). "Cognitive processes in the development of children's appreciation of humor". Society for Research in Child Development. 37 (3): 507–518. doi:10.2307/1126675. JSTOR   1126675. PMID   5970573.
  4. Neely, Michelle; Elizabeth Walker; Jessica Black; Allan Reiss (February 2012). "Neural Correlates of Humor Detection and Appreciation in Children". The Journal of Neuroscience. 5. 32 (5): 1784–1790. doi:10.1523/jneurosci.4172-11.2012. PMC   3711814 . PMID   22302817.
  5. 1 2 3 Uekermann, Jennifer; Shelley Channon; Irene Daum (2006). "Humor processing, mentalizing, and executive function in normal aging". Journal of the International Neuropsychological Society. 12 (2): 184–191. doi:10.1017/s1355617706060280. PMID   16573852. S2CID   951459.
  6. 1 2 3 Greengross, Gil (January 2013). "Humor and aging-a Mini-Review". Journal of Gerontology. 56 (5): 448–453. doi:10.1159/000351005. hdl: 2160/30485 . PMID   23689078. S2CID   4748120.
  7. 1 2 Thaler, Avnin (June 2011). "Appreciation of humor is decreased among patients with Parkinson's disease". Parkinsonism & Related Disorders. 18 (2): 144–148. doi:10.1016/j.parkreldis.2011.09.004. PMID   22000944.
  8. Samson, Andrea; Stefan Zysset; Oswald Huber (2008). "Cognitive Humor Processing: Different logical mechanisms in nonverbal cartoons-an fMRI study". Journal of Social Neuroscience (Submitted manuscript). 2. 3 (2): 125–140. doi:10.1080/17470910701745858. PMID   18633854. S2CID   31663509.
  9. Marinkovich, Ksenija (December 2010). "Right hemisphere has the last laugh: neural dynamics of joke appreciation". Cognitive, Affective, & Behavioral Neuroscience. 11 (1): 113–130. doi:10.3758/s13415-010-0017-7. PMC   3047694 . PMID   21264646.
  10. Chan, Yu-chen (October 2012). "Towards a neural circuit model of verbal humor processing: An fMRI study of the neural substrates of incongruity detection and resolution". NeuroImage. 66: 169–176. doi:10.1016/j.neuroimage.2012.10.019. PMID   23103517. S2CID   9930074.
  11. 1 2 Chan, Yu-Chen; Tai-Li Chou; Hsueh-Chih Chen; Keng-Chen Liang (March 2012). "Segregating the comprehension and elaboration processing of verbal jokes-an fMRI study". NeuroImage. 61 (4): 899–906. doi:10.1016/j.neuroimage.2012.03.052. PMID   22472220. S2CID   5541685.
  12. Chan, Yu-Chen (March 2012). "Towards a neural circuit model of verbal humor processing: An fMRI study of the neural substrates of incongruity detection and resolution". NeuroImage. 66: 169–176. doi:10.1016/j.neuroimage.2012.10.019. PMID   23103517. S2CID   9930074.
  13. 1 2 Samson, Andrea (2008). "Cognitive humor processing: Different logical mechanisms in nonverbal cartoons*an fMRI study". Social Neuroscience (Submitted manuscript). 2. 3 (2): 125–140. doi:10.1080/17470910701745858. PMID   18633854. S2CID   31663509.