Coincidence method

Last updated

In particle physics, the coincidence method (or coincidence technique) is an experimental design through which particle detectors register two or more simultaneous measurements of a particular event through different interaction channels. Detection can be made by sensing the primary particle and/or through the detection of secondary reaction products. Such a method is used to increase the sensitivity of an experiment to a specific particle interaction, reducing conflation with background interactions by creating more degrees of freedom by which the particle in question may interact. The first notable use of the coincidence method was conducted in 1924 by the Bothe–Geiger coincidence experiment. [1]

Contents

The higher the rate of interactions or reaction products that can be measured in coincidence, the harder it is to justify such an event occurred from background flux and the higher the experiment's efficiency. As an example, the Cowan and Reines’ neutrino experiment (1956) used a design that featured a four-fold coincidence technique. [2] Particle detectors that rely on measurements of coincidence are often referred to as q-fold, where q is the number of channel measurements which must be triggered to affirm the desired interaction took place. [3] Anti-coincidence counters or "vetos" are often used to filter common backgrounds, such as cosmic rays, from interacting with the primary detection medium. For instance, such a veto is used in the gamma ray observatory COS-B. Detectors relying on coincidence designs are limited by random, chance coincidence events. [4]

Background

Coincidence designs are an essential technique for increasing confidence in signals and reducing random background within a wide range of particle detectors. Common backgrounds include radioactive decay products (beta, alpha, and gamma radiation) and cosmic rays (protons, air showers). Such backgrounds can produce random interactions within a particle detector that may be hard to differentiate from the target particle. If the particle in question is able to trigger multiple channels that are correlated in time or space, it can be determined more likely that the particle is not a background trigger. "Chance" coincidence events may occur, in which all channels are triggered by particles which are not under investigation yet happen to interact with each channel at the same time. [4] [5] In this case, measurements of this chance event may be difficult to separate from measurements of the target events.

A coincidence design must contain two or more measured channels for detecting a particle interaction which can be correlated with each other or the interaction in question over time, space, and/or the properties/products of the interaction. For some experimental setup with q coincidence channels (q-fold coincidence), the rate at which true correlated coincidence events can be measured is given by:

where is the count rate of each channel and is the time between counts. The higher the time resolution of the coincidence detector, the easier it is to discriminate between "chance" coincidences and true signals. [3]

The rate at which coincidence events are measured compared to the rate at which all suspected signal triggers are measured defines the efficiency of the detector : [6]

in which case can also be defined by the product of all q channels of coincidence times the raw count of particles available for detection : [7]

Therefore, the ability of a detector to successfully confirm signals in coincidence is directly proportional to its efficiency.

History and notable experiments

The use of coincidence detectors in particle physics experiments opened doors to similar methods in nuclear physics, astroparticle physics, and other related fields. A wide variety of operational particle detectors today contain some identifiable form of coincidence or anti-coincidence design.

Geiger, Bothe, and the Geiger-Müller counter

Diagram of the Compton effect. Geiger and Bothe were looking to characterize the physics of energy transfer within discrete systems of particles. This aspect made the Compton effect a desirable phenomenon of study. Compton-scattering.svg
Diagram of the Compton effect. Geiger and Bothe were looking to characterize the physics of energy transfer within discrete systems of particles. This aspect made the Compton effect a desirable phenomenon of study.

In 1924, physicists Walther Bothe and Hans Geiger used the coincidence method to probe the Compton scattering of gamma rays and x-rays, a phenomenon whose quantum mechanical nature (see particle-wave duality) with regard to energy conservation was ambiguous at the time. [1] The Bothe–Geiger experiment was the first significant coincidence experiment to test the transfer of energy between the incoming photon and the electron in this process. The experiment utilized two Geiger counters: one to detect the initial recoiling election and one to simultaneously detect a secondary electron recoil caused by the photonic product of the first recoil. This setup included a coincidence circuit which measured the process to = 1 ms and with an accuracy of 0.1 ms. [8] In 1954, Bothe won the Nobel Prize in Physics for this work. [8]

Conan and Reines' neutrino experiment

In 1956, it was known that in order to balance the spin states of a beta decay process, a neutrino of spin 1/2 had to be a product of the reaction , where is a neutron, is the neutrino, is a proton, and is a beta particle. In an attempt to build on the theoretical concept of a neutrino by providing empirical evidence for its existence, physicists Clyde L. Cowan and Frederik Reines constructed an experiment outside of a nuclear reactor expected to emit neutrinos. Cowan and Reines decided to construct a four-fold coincidence experiment, for while the proximity to a nuclear reactor provided ample flux of neutrinos, it also created intense backgrounds (neutrons, gamma rays, etc.).

The experiment utilized multiple interaction channels through which the presence of a neutrino (or in this experiment, an antineutrino) could be detected. The antineutrinos would enter a tank of water doped with cadmium chloride and interact with a water molecule's proton. This reaction (, where represents a positron and represents an antineutrino) released positions which interacted with one of two adjacent tanks of liquid scintillator. The resulting photons could then be measured by photomultiplier tubes installed on the scintillator tanks. While this interaction occurs, the neutron product from the original reaction follows a random walk through the cadmium-doped water until it is absorbed in a cadmium atom. This process then produces more gamma rays, which are subsequently detected. The overall system therefore includes two pairs of simultaneously recorded events, the correlation of which in time provides strong evidence for an interaction involving a neutrino. [9]

The COS-B gamma ray observatory. Cos-B.jpg
The COS-B gamma ray observatory.

COS-B gamma-ray telescope

The invention of the coincidence method enlightened new techniques for measuring high-energy cosmic rays. On such experiment, COS-B, launched in 1975 and featured an anti-coincidence veto for charged particles, as well as three scintillation detectors to measure electron cascades caused by incoming gamma radiation. Therefore, gamma ray interactions could be measured with three-fold coincidence, after having passed a charged particle veto (see Anti-Coincidence). [10]

Other experiments using coincidence methods

Anti-coincidence

The anti-coincidence method, similarly to the coincidence method, helps discriminate background interactions from target signals. However, anti-coincidence designs are used to actively reject non-signal particles rather than affirm signal particles. [14] For instance, anti-coincidence counters can be used to shield charged particles when an experiment is explicitly searching for neutral particles, [15] as in the SuperKamiokande neutrino experiment. These charged particles are often cosmic rays.

Anti-coincidence detectors work by flagging or rejecting any events that trigger one channel of the detector, but not another. For a given rate of coincident particle interactions, ,

where is the rate of suspected target interactions and is the rate of all detected, but uncorrelated events across multiple channels. [16] This shows that all uncorrelated events, measured using the anti-coincidence technique, can be removed from the whole of possible interactions to retrieve those affirmable coincident interactions. For any q-fold design, would include all coincident and all uncorrelated events.

Further reading

Related Research Articles

<span class="mw-page-title-main">Beta decay</span> Type of radioactive decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle, transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in so-called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, which has a neutral charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton, symbol Da. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

<span class="mw-page-title-main">Sudbury Neutrino Observatory</span> Underground laboratory in Ontario, Canada

The Sudbury Neutrino Observatory (SNO) was a neutrino observatory located 2100 m underground in Vale's Creighton Mine in Sudbury, Ontario, Canada. The detector was designed to detect solar neutrinos through their interactions with a large tank of heavy water.

Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

In physics and electrical engineering, a coincidence circuit or coincidence gate is an electronic device with one output and two inputs. The output activates only when the circuit receives signals within a time window accepted as at the same time and in parallel at both inputs. Coincidence circuits are widely used in particle detectors and in other areas of science and technology.

<span class="mw-page-title-main">ATLAS experiment</span> CERN LHC experiment

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.

<span class="mw-page-title-main">Neutrino astronomy</span> Observing low-mass stellar particles

Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories. Neutrinos are created as a result of certain types of radioactive decay, nuclear reactions such as those that take place in the Sun or high energy astrophysical phenomena, in nuclear reactors, or when cosmic rays hit atoms in the atmosphere. Neutrinos rarely interact with matter, meaning that it is unlikely for them to scatter along their trajectory, unlike photons. Therefore, neutrinos offer a unique opportunity to observe processes that are inaccessible to optical telescopes, such as reactions in the Sun's core. Neutrinos can also offer a very strong pointing direction compared to charged particle cosmic rays.

<span class="mw-page-title-main">Cowan–Reines neutrino experiment</span> Institute of Technology Experimental confirmation of neutrinos

The Cowan–Reines neutrino experiment was conducted by physicists Clyde Cowan and Frederick Reines in 1956. The experiment confirmed the existence of neutrinos. Neutrinos, subatomic particles with no electric charge and very small mass, had been conjectured to be an essential particle in beta decay processes in the 1930s. With neither mass nor charge, such particles appeared to be impossible to detect. The experiment exploited a huge flux of electron antineutrinos emanating from a nearby nuclear reactor and a detector consisting of large tanks of water. Neutrino interactions with the protons of the water were observed, verifying the existence and basic properties of this particle for the first time.

<span class="mw-page-title-main">Neutrino oscillation</span> Phenomenon in which a neutrino changes lepton flavor as it travels

Neutrino oscillation is a quantum mechanical phenomenon in which a neutrino created with a specific lepton family number can later be measured to have a different lepton family number. The probability of measuring a particular flavor for a neutrino varies between three known states, as it propagates through space.

<span class="mw-page-title-main">Air shower (physics)</span> Cascade of atmospheric subatomic particles

Air showers are extensive cascades of subatomic particles and ionized nuclei, produced in the atmosphere when a primary cosmic ray enters the atmosphere. When a particle of the cosmic radiation, which could be a proton, a nucleus, an electron, a photon, or (rarely) a positron, interacts with the nucleus of a molecule in the atmosphere, it produces a vast number of secondary particles, which make up the shower. In the first interactions of the cascade especially hadrons are produced and decay rapidly in the air, producing other particles and electromagnetic radiation, which are part of the shower components. Depending on the energy of the cosmic ray, the detectable size of the shower can reach several kilometers in diameter.

<span class="mw-page-title-main">Solar neutrino</span> Extremely light particle produced by the Sun

A solar neutrino is a neutrino originating from nuclear fusion in the Sun's core, and is the most common type of neutrino passing through any source observed on Earth at any particular moment. Neutrinos are elementary particles with extremely small rest mass and a neutral electric charge. They only interact with matter via the weak interaction and gravity, making their detection very difficult. This has led to the now-resolved solar neutrino problem. Much is now known about solar neutrinos, but the research in this field is ongoing.

<span class="mw-page-title-main">Neutrinoless double beta decay</span> A nuclear physics process that has yet to observed

Neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

The cosmic neutrino background is the universe's background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos.

Radio Ice Cherenkov Experiment (RICE) was an experiment designed to detect the Cherenkov emission in the radio regime of the electromagnetic spectrum from the interaction of high energy neutrinos with the Antarctic ice cap. The goals of this experiment are to determine the potential of the radio-detection technique for measuring the high energy cosmic neutrino flux, determining the sources of this flux, and measuring neutrino-nucleon cross sections at energies above those accessible with existing accelerators. Such an experiment also has sensitivity to neutrinos from gamma ray bursts, as well as highly ionizing charged particles traversing the Antarctic icecap.

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. The model tries to explain this problem by postulating that our universe, with its four dimensions, exists on a membrane in a higher dimensional space. It is then suggested that the other forces of nature operate within this membrane and its four dimensions, while the hypothetical gravity-bearing particle graviton can propagate across the extra dimensions. This would explain why gravity is very weak compared to the other fundamental forces. The size of the dimensions in ADD is around the order of the TeV scale, which results in it being experimentally probeable by current colliders, unlike many exotic extra dimensional hypotheses that have the relevant size around the Planck scale.

<span class="mw-page-title-main">CUORE</span>

The Cryogenic Underground Observatory for Rare Events (CUORE) – also cuore (Italian for 'heart'; ) – is a particle physics facility located underground at the Laboratori Nazionali del Gran Sasso in Assergi, Italy. CUORE was designed primarily as a search for neutrinoless double beta decay in 130Te, a process that has never been observed. It uses tellurium dioxide (TeO2) crystals as both the source of the decay and as bolometers to detect the resulting electrons. CUORE searches for the characteristic signal of neutrinoless double beta decay, a small peak in the observed energy spectrum around the known decay energy; for 130Te, this is Q = 2527.518 ± 0.013 keV. CUORE can also search for signals from dark matter candidates, such as axions and WIMPs.

<span class="mw-page-title-main">LZ experiment</span> Experiment in South Dakota, United States

The LUX-ZEPLIN (LZ) Experiment is a next-generation dark matter direct detection experiment hoping to observe weakly interacting massive particles (WIMP) scatters on nuclei. It was formed in 2012 by combining the LUX and ZEPLIN groups. It is currently a collaboration of 30 institutes in the US, UK, Portugal and South Korea. The experiment is located at the Sanford Underground Research Facility (SURF) in South Dakota, and is managed by the United States Department of Energy's (DOE) Lawrence Berkeley National Lab.

References

  1. 1 2 Bonolis, Luisa. "Walther Bothe and Bruno Rossi: The birth and development of coincidence methods in cosmic-ray physics." Italian Association for the Teaching of Physics, arXiv, 29 Jul. 2011, arxiv.org/pdf/1106.1365.pdf.
  2. Cowan, C. L. et al. "Detection of the Free Neutrino: a Confirmation." Science, vol. 124, no. 3212, 20 Jul. 1956, p. 448, DOI: 10.1126/science.124.3212.103.
  3. 1 2 Grupen, C. and B. Shwartz. Particle Detectors. Cambridge Monographs of Particle Physics, Nuclear Physics, and Cosmology 26, Second edition, Cambridge University Press, 2008, p. 64, kaf07.mephi.ru/eduroom/Books/Particle_Detectors_Grupen.pdf
  4. 1 2 Grupen, C. and B. Shwartz (2008). Particle Detectors. Cambridge Monographs of Particle Physics, Nuclear Physics, and Cosmology 26, Second edition, Cambridge University Press, p. 63.
  5. Green, Dan. “The Physics of Particle Detectors.” Cambridge Monographs of Particle Physics, Nuclear Physics, and Cosmology 12, Cambridge University Press, 2000, p. 51.
  6. "Triple Coincidence Applications." Hidex Oy, 2023, hidex.com/ebooks/liquid-scintillation-measuring-procedures/introduction/triple-coincidence-applications/.
  7. Grupen, C. and B. Shwartz. Particle Detectors. Cambridge Monographs of Particle Physics, Nuclear Physics, and Cosmology 26, Second edition, Cambridge University Press, 2008, p. 65, kaf07.mephi.ru/eduroom/Books/Particle_Detectors_Grupen.pdf
  8. 1 2 Bothe, Walther (1954). "The Coincidence Method", Nobel Lecture. Retrieved 11 August 2023.
  9. Cowan, C. L. et al. "Detection of the Free Neutrino: a Confirmation." Science, vol. 124, no. 3212, 20 Jul. 1956, pp. 447-448, DOI: 10.1126/science.124.3212.103.
  10. "COS-B." NASA, NASA's HEASARC: Observatories, 20 Apr. 2020, heasarc.gsfc.nasa.gov/docs/cosb/cosb_about.html.
  11. Grupen, C. and B. Shwartz. Particle Detectors. Cambridge Monographs of Particle Physics, Nuclear Physics, and Cosmology 26, Second edition, Cambridge University Press, 2008, p. 493, kaf07.mephi.ru/eduroom/Books/Particle_Detectors_Grupen.pdf
  12. "AMS-02 Detector." AMS, ams02.space/detector.
  13. "CRESST." Laboratori Nazionali del Gran Sasso, www.lngs.infn.it/en/cresst.
  14. Grupen, C. Astroparticle Physics. Springer, 2010, p. 114.
  15. Grupen, C. and B. Shwartz. Particle Detectors. Cambridge Monographs of Particle Physics, Nuclear Physics, and Cosmology 26, Second edition, Cambridge University Press, 2008, pp. 297, 319, kaf07.mephi.ru/eduroom/Books/Particle_Detectors_Grupen.pdf 297, 319
  16. Müller, J. W. et al. "The Anti-Coincidence Method." ICUR Report: Particle Counting in Radioactivity Measurements, vol. os-27, Issue 1, no. 52, International Commission on Radiation Units & Measurements, 1994, doi.org/10.1093/jicru_os27.1.4