In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute.
The generalized homology and cohomology complex cobordism theories were introduced by MichaelAtiyah ( 1961 ) using the Thom spectrum.
The complex bordism of a space is roughly the group of bordism classes of manifolds over with a complex linear structure on the stable normal bundle. Complex bordism is a generalized homology theory, corresponding to a spectrum MU that can be described explicitly in terms of Thom spaces as follows.
The space is the Thom space of the universal -plane bundle over the classifying space of the unitary group . The natural inclusion from into induces a map from the double suspension to . Together these maps give the spectrum ; namely, it is the homotopy colimit of .
Examples: is the sphere spectrum. is the desuspension of .
The nilpotence theorem states that, for any ring spectrum , the kernel of consists of nilpotent elements. [1] The theorem implies in particular that, if is the sphere spectrum, then for any , every element of is nilpotent (a theorem of Goro Nishida). (Proof: if is in , then is a torsion but its image in , the Lazard ring, cannot be torsion since is a polynomial ring. Thus, must be in the kernel.)
JohnMilnor ( 1960 ) and SergeiNovikov ( 1960 , 1962 ) showed that the coefficient ring (equal to the complex cobordism of a point, or equivalently the ring of cobordism classes of stably complex manifolds) is a polynomial ring on infinitely many generators of positive even degrees.
Write for infinite dimensional complex projective space, which is the classifying space for complex line bundles, so that tensor product of line bundles induces a map A complex orientation on an associative commutative ring spectrum E is an element x in whose restriction to is 1, if the latter ring is identified with the coefficient ring of E. A spectrum E with such an element x is called a complex oriented ring spectrum.
If E is a complex oriented ring spectrum, then
and is a formal group law over the ring .
Complex cobordism has a natural complex orientation. DanielQuillen ( 1969 ) showed that there is a natural isomorphism from its coefficient ring to Lazard's universal ring, making the formal group law of complex cobordism into the universal formal group law. In other words, for any formal group law F over any commutative ring R, there is a unique ring homomorphism from MU*(point) to R such that F is the pullback of the formal group law of complex cobordism.
Complex cobordism over the rationals can be reduced to ordinary cohomology over the rationals, so the main interest is in the torsion of complex cobordism. It is often easier to study the torsion one prime at a time by localizing MU at a prime p; roughly speaking this means one kills off torsion prime to p. The localization MUp of MU at a prime p splits as a sum of suspensions of a simpler cohomology theory called Brown–Peterson cohomology, first described by Brown & Peterson (1966). In practice one often does calculations with Brown–Peterson cohomology rather than with complex cobordism. Knowledge of the Brown–Peterson cohomologies of a space for all primes p is roughly equivalent to knowledge of its complex cobordism.
The ring is isomorphic to the formal power series ring where the elements cf are called Conner–Floyd classes. They are the analogues of Chern classes for complex cobordism. They were introduced by Conner & Floyd (1966).
Similarly is isomorphic to the polynomial ring
The Hopf algebra MU*(MU) is isomorphic to the polynomial algebra R[b1, b2, ...], where R is the reduced bordism ring of a 0-sphere.
The coproduct is given by
where the notation ()2i means take the piece of degree 2i. This can be interpreted as follows. The map
is a continuous automorphism of the ring of formal power series in x, and the coproduct of MU*(MU) gives the composition of two such automorphisms.
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.
In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.
In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.
In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory
,
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.
In mathematics, the Thom space,Thom complex, or Pontryagin–Thom construction of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space.
In algebraic topology, a Steenrod algebra was defined by Henri Cartan to be the algebra of stable cohomology operations for mod cohomology.
In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions Quaternionic projective space of dimension n is usually denoted by
In mathematics, the classifying space for the unitary group U(n) is a space BU(n) together with a universal bundle EU(n) such that any hermitian bundle on a paracompact space X is the pull-back of EU(n) by a map X → BU(n) unique up to homotopy.
In mathematics, the Adams spectral sequence is a spectral sequence introduced by J. Frank Adams which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre.
In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups
In mathematics, Brown–Peterson cohomology is a generalized cohomology theory introduced by Edgar H. Brown and Franklin P. Peterson, depending on a choice of prime p. It is described in detail by Douglas Ravenel . Its representing spectrum is denoted by BP.
In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan and Daniel Quillen. This simplification of homotopy theory makes certain calculations much easier.
In homotopy theory, a branch of algebraic topology, a Postnikov system is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree agrees with the truncated homotopy type of the original space . Postnikov systems were introduced by, and are named after, Mikhail Postnikov.
In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.
In algebraic topology, a complex-orientable cohomology theory is a multiplicative cohomology theory E such that the restriction map is surjective. An element of that restricts to the canonical generator of the reduced theory is called a complex orientation. The notion is central to Quillen's work relating cohomology to formal group laws.
This is a glossary of properties and concepts in algebraic topology in mathematics.
In mathematics, specifically algebraic topology, there is a resolution analogous to free resolutions of spectra yielding a tool for constructing the Adams spectral sequence. Essentially, the idea is to take a connective spectrum of finite type and iteratively resolve with other spectra that are in the homotopy kernel of a map resolving the cohomology classes in using Eilenberg–MacLane spectra.