Conservation paleobiology

Last updated

Conservation paleobiology is a field of paleontology that applies the knowledge of the geological and paleoecological record to the conservation and restoration of biodiversity and ecosystem services. [1] Despite the influence of paleontology on ecological sciences can be traced back at least at the 18th century, [2] the current field has been established by the work of K.W. Flessa and G.P. Dietl in the first decade of the 21st century. [3] The discipline utilizes paleontological and geological data to understand how biotas respond to climate and other natural and anthropogenic environmental change. These information are then used to address the challenges faced by modern conservation biology, like understanding the extinction risk of endangered species, providing baselines for restoration and modelling future scenarios for species range's contraction or expansion. [1]

Contents

Description of the discipline

The main strength of conservation paleobiology is the availability of long term data on species, communities and ecosystems that exceeds the timeframe of direct human experience.  The discipline takes one of two approaches: near-time and deep-time.

Near-time conservation paleobiology

The near-time approach uses the recent fossil record (usually from the Late Pleistocene or the Holocene) to provide a long-term context to extant ecosystems dynamics. The fossil record is, in many cases, the only source of information on conditions previous to human impacts. These records can be used as reference baselines for comparisons in order to identify targets for restoration ecology, to analyze species responses to perturbations (natural and anthropogenic), understand historical species distributions and their variability, discriminate the factors that distinguish natural from non-natural changes in biological populations and identify ecological legacies only explicable by referring to past events or conditions. [1]

Example - Conservation of the European bison

European bison with juvenile in the Bialowieza Forest EuropeanBisonJuly2014.jpg
European bison with juvenile in the Bialowieza Forest

The European bison or wisent (Bison bonasus) is a large herbivore once widespread in Europe that saw a range decrease over the last thousand years, surviving only in Central European forests with the last wild population going extinct in Bialowieza forest in 1921. Starting from 1929, reintroduction of animals from zoos allowed the species to recover in the wild. The historical range of Bison bonasus was limited to forested areas, so since at least the sixteenth century conservation measures to preserve the species were based on the assumption that a forest would be the optimal habitat of the species. [4] Ecological, morphological and paleoecological evidences, however, shows that B. bonasus is best adapted to open or mixed environments, [4] indicating that the species was "forced" into a suboptimal habitat due to human influences such as habitat loss, competition with livestock, diseases and hunting. This information has been applied recently to adopt measures more suitable for the conservation of the species. [5]

Deep-time conservation paleobiology

The deep-time approach uses examples of species, communities and ecosystem responses to environmental changes on a longer geologic record, as an archive of natural ecological and evolutionary laboratory. This approach provides examples to infer possible settings concerning climate warming, introduction of invasive species and decline in cultural eutrophication. This also permits the identification of species responses to perturbations of various types and scale to serve as a model for the future scenarios, for example abrupt climate change or volcanic winters. Given its deep-time nature, this approach allows for testing how organisms or ecosystems react to a bigger set of conditions than what is observable in the modern world or in the recent past.

Example - Insect damage and increasing temperatures

A pressing issue related to current global warming is the potential expansion in the range of tropical and subtropical crop pests, however the signal related to this poleward expansion is not clear. [6] [1] The analyses of the fossil record from past warm intervals of Earth's history (Paleogene-Eocene Thermal Maximum) provides an adequate comparison to test this hypothesis. Data shows that, during warmer climates, the frequency and diversity of insect damage to North American plants increased significantly, [7] providing support to the hypothesis of pests expansion due to global warming. [1]

Relevance to conservation biology

Over the years, numerous attempts have been made to increase the synergy between paleobiologists and conservation scientists and managers. [1] [8] [2] Despite being recognized as a useful tool to address current biodiversity problems, [8] fossil data is still rarely included in contemporary conservation-related research, with the vast majority of studies focusing on short timescales. [9] However, a few authors have used comparisons of extinction in the geologic past to taxon losses in modern times providing important perspectives on the severity of the modern biodiversity crisis [10] [11] [12] [13] [14]

Marine Paleobiology is an interdisciplinary study that utilizes the tools of paleontology and applies them to marine conservation biology. Looking at the deep-time fossil record separates this field from historical ecology. [15]

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the study of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

<span class="mw-page-title-main">Extinction event</span> Widespread and rapid decrease in the biodiversity on Earth

An extinction event is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp fall in the diversity and abundance of multicellular organisms. It occurs when the rate of extinction increases with respect to the background extinction rate and the rate of speciation. Estimates of the number of major mass extinctions in the last 540 million years range from as few as five to more than twenty. These differences stem from disagreement as to what constitutes a "major" extinction event, and the data chosen to measure past diversity.

<span class="mw-page-title-main">Holocene extinction</span> Ongoing extinction event caused by human activity

The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event caused by humans during the Holocene epoch. These extinctions span numerous families of plants and animals, including mammals, birds, reptiles, amphibians, fish, and invertebrates, and affecting not just terrestrial species but also large sectors of marine life. With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded. The current rate of extinction of species is estimated at 100 to 1,000 times higher than natural background extinction rates and is increasing.

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic, species, and ecosystem level. Biodiversity is not distributed evenly on Earth; it is usually greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than 10% of earth's surface and contain about 90% of the world's species. Marine biodiversity is usually higher along coasts in the Western Pacific, where sea surface temperature is highest, and in the mid-latitudinal band in all oceans. There are latitudinal gradients in species diversity. Biodiversity generally tends to cluster in hotspots, and has been increasing through time, but will be likely to slow in the future as a primary result of deforestation. It encompasses the evolutionary, ecological, and cultural processes that sustain life.

<span class="mw-page-title-main">Extinction</span> Termination of a taxon by the death of its last member

Extinction is the termination of a taxon by the death of its last member. A taxon may become functionally extinct before the death of its last member if it loses the capacity to reproduce and recover. Because a species' potential range may be very large, determining this moment is difficult, and is usually done retrospectively. This difficulty leads to phenomena such as Lazarus taxa, where a species presumed extinct abruptly "reappears" after a period of apparent absence.

<span class="mw-page-title-main">Conservation biology</span> Study of threats to biological diversity

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

<span class="mw-page-title-main">Habitat conservation</span> Management practice for protecting types of environments

Habitat conservation is a management practice that seeks to conserve, protect and restore habitats and prevent species extinction, fragmentation or reduction in range. It is a priority of many groups that cannot be easily characterized in terms of any one ideology.

<span class="mw-page-title-main">Anthropocene</span> Proposed geologic epoch for present time

The Anthropocene is a proposed geological epoch dating from the commencement of significant human impact on Earth's geology and ecosystems, including, but not limited to, human-caused climate change. The nature of the effects of humans on Earth can be seen for example in biodiversity loss, climate change, biogeography and nocturnality parameters, changes in geomorphology and stratigraphy.

<span class="mw-page-title-main">Paleoecology</span> Study of interactions between organisms and their environments across geologic timescales

Paleoecology is the study of interactions between organisms and/or interactions between organisms and their environments across geologic timescales. As a discipline, paleoecology interacts with, depends on and informs a variety of fields including paleontology, ecology, climatology and biology.

<span class="mw-page-title-main">Restoration ecology</span> Scientific study of renewing and restoring ecosystems

Ecological restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed. It is distinct from conservation and preservation in that it is an "attempt to co-design nature with nonhuman collaborators." Ecological restoration can reverse biodiversity loss, combat climate change, and support local economies. The United Nations named 2021-2030 the Decade on Ecosystem Restoration.

<span class="mw-page-title-main">Reconciliation ecology</span> Study of maintaining biodiversity in human-dominated ecosystems

Reconciliation ecology is the branch of ecology which studies ways to encourage biodiversity in the human-dominated ecosystems of the anthropocene era. Michael Rosenzweig first articulated the concept in his book Win-Win Ecology, based on the theory that there is not enough area for all of earth's biodiversity to be saved within designated nature preserves. Therefore, humans should increase biodiversity in human-dominated landscapes. By managing for biodiversity in ways that do not decrease human utility of the system, it is a "win-win" situation for both human use and native biodiversity. The science is based in the ecological foundation of human land-use trends and species-area relationships. It has many benefits beyond protection of biodiversity, and there are numerous examples of it around the globe. Aspects of reconciliation ecology can already be found in management legislation, but there are challenges in both public acceptance and ecological success of reconciliation attempts.

Quaternary science is the subfield of geology which studies the Quaternary Period commonly known as the ice age. The Quaternary Period is a time period that started around 2.58 million years ago and continues today. This period is divided into two epochs – the Pleistocene Epoch and the Holocene Epoch. The aim of Quaternary science is to understand everything that happened during the Pleistocene Epoch and the Holocene Epoch to be able to acquire fundamental knowledge about Earth's environment, ecosystem, climate changes, etc. Quaternary science was first studied during the nineteenth century by Georges Cuvier, a French scientist. Most Quaternary scientists have studied the history of the Quaternary to predict future changes in climate.

<span class="mw-page-title-main">Global biodiversity</span> Total variability of Earths life forms

Global biodiversity is the measure of biodiversity on planet Earth and is defined as the total variability of life forms. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates on the number of Earth's current species range from 2 million to 1 trillion, but most estimates are around 11 million species or fewer. About 1.74 million species were databased as of 2018, and over 80 percent have not yet been described. The total amount of DNA base pairs on Earth, as a possible approximation of global biodiversity, is estimated at 5.0 x 1037, and weighs 50 billion tonnes. In comparison, the total mass of the biosphere has been estimated to be as much as 4 TtC (trillion tons of carbon).

Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecological populations, communities, or ecosystems will change in the future in response to environmental factors such as climate change. The goal of the approach is to provide natural resource managers with information to anticipate and respond to short and long-term climate conditions.

Tropical ecology is the study of the relationships between the biotic and abiotic components of the tropics, or the area of the Earth that lies between the Tropic of Cancer and the Tropic of Capricorn. The tropical climate experiences hot, humid weather and rainfall year-round. While many might associate the region solely with the rainforests, the tropics are home to a wide variety of ecosystems that boast a great wealth of biodiversity, from exotic animal species to seldom-found flora. Tropical ecology began with the work of early English naturalists and eventually saw the establishment of research stations throughout the tropics devoted to exploring and documenting these exotic landscapes. The burgeoning ecological study of the tropics has led to increased conservation education and programs devoted to the climate.

<span class="mw-page-title-main">Conservation biology of parasites</span>

A large proportion of living species on Earth live a parasitic way of life. Parasites have traditionally been seen as targets of eradication efforts, and they have often been overlooked in conservation efforts. In the case of parasites living in the wild – and thus harmless to humans and domesticated animals – this view is changing. The conservation biology of parasites is an emerging and interdisciplinary field that recognizes the integral role parasites play in ecosystems. Parasites are intricately woven into the fabric of ecological communities, with diverse species occupying a range of ecological niches and displaying complex relationships with their hosts.

In paleoecology and ecological forecasting, a no-analog community or climate is one that is compositionally different from a baseline for measurement. Alternative naming conventions to describe no-analog communities and climates may include novel, emerging, mosaic, disharmonious and intermingled.

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species and local ecosystem loss reduction or loss of species in a given habitat

Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent. The current global extinction, has resulted in a biodiversity crisis being driven by human activities which push beyond the planetary boundaries and so far has proven irreversible.

Susan M. Kidwell is an American paleontologist and geologist at the University of Chicago. Her research has focused on the relationships between fossil concentrations and sequence stratigraphy, experimental taphonomy, and the implications of the very recent fossil record for understanding modern ecological changes.

<span class="mw-page-title-main">Wood-pasture hypothesis</span> Ecological theory

The wood-pasture hypothesis is a scientific hypothesis positing that open and semi-open pastures and wood-pastures formed the predominant type of landscape in post-glacial temperate Europe, rather than the common belief of primeval forests. The hypothesis proposes that such a landscape would be formed and maintained by large wild herbivores. Although others, including Oliver Rackham, who criticised the idea of an all-encompassing, dark primeval forest in pre-neolithic Europe, had previously expressed similar ideas, it was Dutch researcher Frans Vera, who, in his 2000 book Grazing Ecology and Forest History, first developed a comprehensive framework for such ideas and formulated them into a theorem. Vera's proposals, although highly controversial, came at a time when the role grazers played in woodlands was increasingly being reconsidered, and are credited for ushering in a period of increased reassesment and interdisciplinary research in European conservation theory and practice. Although Vera largely focused his research on the European situation, his findings could also be applied to other temperate ecological regions worldwide, especially the broadleaved ones.

References

  1. 1 2 3 4 5 6 Dietl, Gregory P.; Kidwell, Susan M.; Brenner, Mark; Burney, David A.; Flessa, Karl W.; Jackson, Stephen T.; Koch, Paul L. (2015-05-30). "Conservation Paleobiology: Leveraging Knowledge of the Past to Inform Conservation and Restoration". Annual Review of Earth and Planetary Sciences. 43 (1): 79–103. doi:10.1146/annurev-earth-040610-133349. ISSN   0084-6597.
  2. 1 2 Louys, Julien. (2012). Paleontology in ecology and conservation. Springer. ISBN   978-3-642-25038-5. OCLC   793282763.
  3. RICK, TORBEN C.; LOCKWOOD, ROWAN (2012-09-14). "Integrating Paleobiology, Archeology, and History to Inform Biological Conservation". Conservation Biology. 27 (1): 45–54. doi:10.1111/j.1523-1739.2012.01920.x. ISSN   0888-8892. PMID   22979917. S2CID   4515511.
  4. 1 2 Kerley, G. I. H.; Kowalczyk, R.; Cromsigt, J. P. G. M. (June 2012). "Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat?". Ecography. 35 (6): 519–529. doi: 10.1111/j.1600-0587.2011.07146.x .
  5. Schmitz, Philip; Caspers, Stephanie; Warren, Paige; Witte, Klaudia (2015-11-25). Lepczyk, Christopher A. (ed.). "First Steps into the Wild – Exploration Behavior of European Bison after the First Reintroduction in Western Europe". PLOS ONE. 10 (11): e0143046. doi: 10.1371/journal.pone.0143046 . ISSN   1932-6203. PMC   4659542 . PMID   26605549.
  6. Bebber, Daniel Patrick (2015-08-04). "Range-Expanding Pests and Pathogens in a Warming World". Annual Review of Phytopathology. 53 (1): 335–356. doi:10.1146/annurev-phyto-080614-120207. ISSN   0066-4286. PMID   26047565.
  7. Labandeira, Conrad C.; Currano, Ellen D. (2013-05-30). "The Fossil Record of Plant-Insect Dynamics". Annual Review of Earth and Planetary Sciences. 41 (1): 287–311. doi:10.1146/annurev-earth-050212-124139. ISSN   0084-6597.
  8. 1 2 National Research Council (U.S.). Committee on the Geologic Record of Biosphere Dynamics. National Research Council (U.S.). Division on Earth and Life Studies. National Academies Press (U.S.) (13 February 2005). The geological record of ecological dynamics : understanding the biotic effects of future environmental change. ISBN   0-309-09580-8. OCLC   933133540.
  9. Froyd, C.A.; Willis, K.J. (September 2008). "Emerging issues in biodiversity & conservation management: The need for a palaeoecological perspective". Quaternary Science Reviews. 27 (17–18): 1723–1732. doi:10.1016/j.quascirev.2008.06.006. ISSN   0277-3791.
  10. McCallum, Malcolm L. (2015). "Vertebrate biodiversity losses point to a sixth mass extinction". Biodiversity and Conservation. 24 (10): 2497–2515. doi:10.1007/s10531-015-0940-6. S2CID   254285797.
  11. McCallum, Malcolm L. (2007). "Amphibian decline or extinction?current declines dwarf background extinction rate". Journal of Herpetology. 41 (3): 483–491. doi:10.1670/0022-1511(2007)41[483:ADOECD]2.0.CO;2. S2CID   30162903.
  12. McCallum, Malcolm L. (2021). "Turtle biodiversity losses suggest sixth mass extinction". Biodiversity and Conservation. 24: 1257–1275. doi:10.1007/s10531-021-02140-8. S2CID   233903598.
  13. Ceballos, G; Ehrlich, Paul R; Barnosky, Anthony D; Garcia, A; Pringle, R M; Palmer, T M (2015). "Accelerated modern human-induced species losses: entering the sixth mass extinction". Science Advances. 1: e1400253. doi:10.1007/s10531-021-02140-8. S2CID   233903598.
  14. Barnosky, Anthony; Matzke, Nicholas R; Tomiya, Susumu; Wogan, G O U; Schwartz, Brian; Quental, Tiago (2011). "Has the Earth's sixth mass extinction already arrived?". Nature. 471 (7336): 51–57. doi:10.1038/nature09678. PMID   21368823. S2CID   4424650.
  15. Dietl, Gregory P.; Flessa, Karl W. (2011). "Conservation paleobiology: putting the dead to work". Trends in Ecology & Evolution. 26 (1): 30–37. doi:10.1016/j.tree.2010.09.010. PMID   21035892.