ControlTrac

Last updated

ControlTrac four-wheel drive is the brand name of a selectable automatic full-time four-wheel drive system offered by Ford Motor Company. The four-wheel drive system was designed and developed at BorgWarner under its TorqTransfer Systems division in the mid 1980s. [1] [2] [3] BorgWarner calls the system Torque-On-Demand (TOD). ControlTrac was the first automatic system to use software control and no planetary or bevel geared center differential. [1] Instead of a planetary or bevel geared center differential, the system uses a variable intelligent locking center multi-disc differential. [4]

Contents

Availability

ControlTrac made its debut on January 12, 1995, for the 1995 model year on the second generation Ford Explorer mid-size sport utility vehicle. [1] A heavy-duty version of ControlTrac was introduced in 1996 for the 1997 model year on the first generation Ford Expedition full-size sport utility vehicle. [2]

Vehicles available with automatic ControlTrac four-wheel drive
VehicleModel YearTransfer case
Ford Explorer MY1995–2010two-speed
Ford Expedition MY1997–presenttwo-speed
Ford Expedition EL/Max MY2007–presenttwo-speed
Lincoln Navigator MY1998–2006two-speed
Lincoln Navigator MY2007–presentsingle-speed*
Lincoln Navigator LMY2007–presentsingle-speed*

*Does not have Four Low mode with low range off road reduction gearing.

The fifth generation 2011 Ford Explorer (U502) replaced automatic ControlTrac four-wheel drive with automatic Intelligent four-wheel drive and Terrain Management. [5] [6]

Design and development

The idea for an electronically controlled four-wheel drive system emerged at BorgWarner in 1985. [1] BorgWarner's original design called for using both a software controlled electromagnetic multi-disc (also called multi-plate) clutch pack and a planetary or bevel geared center differential together. The first prototype system was crude, and its original clutch pack controller was a rheostat. [1]

The geared center differential would be used to allow the front and rear drive shafts to turn at different rotational speeds so as to eliminate any "drivetrain binding" or "torque windup" while the system was being used on pavement. The intelligent multi-disc clutch would be used to progressively transfer torque back-to-front and front-to-back between the front and rear drive shafts when needed and would also lockup providing a permanently locked front 50:50 rear torque distribution. [1]

Within a year, the controller had become larger and more complex. A breadboard electronic version complete with sensor amplifiers and large control modules consumed the entire back end of a station wagon. Input data came from variable reluctance sensors installed at the front drive shaft, rear drive shaft, throttle, brakes, and steering. The goal was to control clutch actuation by controlling current. [1]

However, as the development process continued, engineers at BorgWarner discovered that, with clever software programming, they could control the variable electromagnetic multi-disc clutch to a point where it would allow the front and rear drive shafts to turn at different rotational speeds on its own, without the aid of a planetary or bevel geared center differential. In Auto mode the new software algorithms allowed the multi-disc clutch pack's friction and clutch discs to slip as needed, simulating a planetary or bevel geared center differential, making a geared differential redundant. Thus, the geared differential was abandoned and therefore never included on the final production version of the four-wheel drive system. [1]

We asked ourselves: Why do we need a differential? There was all of that iron, all that weight, all that cost. And here, we saw that we could control the clutch pack very precisely without it.

Ronald A. Schoenbach [1]

The design team gained confidence in their concept in 1989, when they made a breakthrough in the multi-disc clutch's control system. Development of closed-loop control smoothed its operation. [1] Using it, the multi-disc clutch made smaller adjustments, but did it more frequently. [1] The microprocessor would review input from sensors every 20 milliseconds and decide if the front axle needed more torque. Using this technique, the unit's computer watched for drive wheel slip. If it sensed as little as half an rpm difference between the front and rear axles, it sent a power signal to the multi-disc clutch. The clutch engaged, diverting torque to the front axle in 10 percent increments, until it alleviated the drive wheel slip. As a result, the system could control runaway drive wheel speed in as little as a third of a wheel revolution. [1]

Off road testing

Early in the development, BorgWarner had employed a sintered bronze clutch material that exhibited an operating condition commonly known as "stick slip." The slippage had inspired engineers to replace it with a paper-based material mounted atop metal. The paper offered a better coefficient of friction and solved the slippage problem. BorgWarner's automatic transmission components division is credited for the solution. [1]

However, heat proved to be a persistent issue. Excessive heat buildup would burn out the new clutch material. To solve the problem, engineers studied the clutch's torque capacity. It was determined that excessive heat buildup was caused by inadequate clutch torque capacity. Engineers increased the system's capacity and equipped a fleet of test vehicles, which they took to the Anza-Borrego desert in southern California. They made a total of 11 trips, subjecting the prototypes to heat, mountain driving, and deep sand with the intelligent multi-disc clutches being called upon for almost continuous delivery of torque. At first, the environment quickly burned out the clutches. But as engineers gained knowledge, the clutches improved. Eventually, the engineers were able to improve the clutch packs enough that the test vehicles could be virtually destroyed from hard off-road use, but the clutch packs would still look good. [1]

Modes

ControlTrac has different drive modes as well as different operational behavior for those drive modes depending on which vehicle it is used in. For example, the Ford Expedition used a new auto lock feature in Auto mode. Auto mode with auto lock was not available on the Explorer at that time. [2]

Two High mode

Predominantly, Explorer was not equipped with Two High mode except in the 1995-1996 model years. In model years 1998-up no Two High was available. Only Auto, Four High and Four Low modes were offered. Two High mode was unique to the Expedition, though it was discontinued between the 1999–2002 model years. Two High mode was reintroduced on the redesigned second generation Expedition (U222) for the 2003 model year and featured a new full front axle disconnect system with vacuum operated front locking hubs that would disconnect the front axle, front differential, and front drive shaft when not needed for quieter, more fuel-efficient operation on pavement. [7] Ford claimed that the improved Two High mode could help increase fuel economy up to half-a-mile per gallon of gasoline. [7] In Two High mode, torque is routed to the rear drive wheels only, imitating rear-wheel drive.

Auto mode

Auto mode was featured on both Explorer and Expedition and allows for all-weather, full-time four-wheel drive capability on pavement as needed. In Auto mode, the engine's torque is normally routed to the rear drive wheels. A misconception about the system is that it continuously shifts into and out of four-wheel drive as needed. This is not true, for when Auto mode is selected, the front axle hubs are permanently engaged, locking them to the front axle shafts, front differential, and front drive shaft. This is so the front drive shaft always rotates (turns) when the vehicle is being driven at speed. The computer control system needs the front drive shaft to turn, so that it can monitor and compare the rotational speed of both the front and rear drive shafts. If the rear drive shaft starts to turn faster than the front, the system interprets that (along with input from other sensors) as traction loss. When traction loss is detected, torque is sent forward to the front differential in 10 percent increments, via the center multi-disc clutch. As it does so, intelligent control software allows the center multi-disc clutch to behave like a geared center differential, such that "driveline binding" and "torque windup" do not occur.

In the early 2000s, ControlTrac was updated and introduced in 2002 with more advanced software programming, building on the system's artificial intelligence. [8] The four-wheel drive system's updated artificial intelligence allowed the system to predict traction loss before it happened, so that torque can be transferred before it was needed. [7] [8] This improvement meant the system could operate more like other "always-on" full-time four-wheel drive systems as it no longer had to "wait" for traction loss to take action. [8] Another improvement was front-to-rear "torque biasing" capability in Auto mode. ControlTrac's intelligent multi-disc differential could now send all 100 percent of the engine’s torque forward, biasing it to the front differential if severe traction loss was anticipated, predicted, or detected. [8]

Four High and Four Low modes

Four High and Four Low modes were also featured on both Explorer and Expedition. Four High mode tells the intelligent locking multi-disc differential to lock, providing a permanently locked 50:50 torque distribution. [4] The front and rear drive shafts are fully locked, forcing them to rotate at the same speed regardless of tractive conditions. Four Low mode also tells the intelligent locking multi-disc differential to lock, however it instructs the BorgWarner transfer case to select low range off-road reduction gearing. [4] Reduction gearing is utilized to reduce the vehicle's speed to a manageable crawl, and to increase (multiply) the supplied torque coming from the engine. Thus the drive wheels have ample torque to move the vehicle at low speeds. It is also used to control downward speeds while descending steep gradients and to improve the vehicle's off-road crawl ratio.

Both Four High mode and Four Low mode cannot be used on pavement as "driveline binding" and "torque windup" can occur, causing damage to the four-wheel-drive system.

AdvanceTrac

The automatic ControlTrac four-wheel drive system can be coupled with AdvanceTrac electronic stability control, which includes four-wheel electronic traction control. The combination of these two systems is innovative due to a vehicle equipped as such, can continue to move forward with only one wheel having traction. [7] AdvanceTrac's four-wheel electronic traction control system uses the vehicle's four-wheel four-sensor four-channel anti-lock braking system (ABS) and is programmed with additional anti-slip logic to simulate differential locks via aggressively "brake locking" either the front or rear drive axle differentials. By ABS brake locking the front and rear differentials, up to 100 percent of torque can be sent to any one drive wheel, allowing the vehicle to keep moving, even with two of its drive wheels (one front, one rear) completely off the ground. [7]

ControlTrac II

ControlTrac II was a Ford four-wheel drive system based on a viscous coupling unit. The viscous coupling replaced the typical center differential used in four-wheel drive applications. The system worked normally in front wheel drive but in addition to the front wheels being driven, a shaft is powered that runs to the viscous coupling in the rear. If the front wheels slip, the viscous coupling progressively releases torque to the rear wheels. Additionally, the ControlTrac II system provided a mechanical lock of four-wheel drive though there was no low range provided by the system.

ControlTrac II has since been replaced by the automatic Intelligent four-wheel drive system, a similar system with the viscous coupling replaced by a computer controlled clutch. The Intelligent 4WD system functionally acts similar to the ControlTrac II system, with the front wheels being driven predominately with torque being sent to the rear wheels only as conditions dictate. The Intelligent 4WD system also lacks the mechanical lock provided by ControlTrac II.

Related Research Articles

<span class="mw-page-title-main">Differential (mechanical device)</span> Type of simple planetary gear train

A differential is a gear train with three drive shafts that has the property that the rotational speed of one shaft is the average of the speeds of the others. A common use of differentials is in motor vehicles, to allow the wheels at each end of a drive axle to rotate at different speeds while cornering. Other uses include clocks and analog computers.

A traction control system (TCS), is typically a secondary function of the electronic stability control (ESC) on production motor vehicles, designed to prevent loss of traction of the driven road wheels. TCS is activated when throttle input and engine power and torque transfer are mismatched to the road surface conditions.

<span class="mw-page-title-main">Four-wheel drive</span> Type of drivetrain with four driven wheels

Four-wheel drive, also called 4×4 or 4WD, refers to a two-axled vehicle drivetrain capable of providing torque to all of its wheels simultaneously. It may be full-time or on-demand, and is typically linked via a transfer case providing an additional output drive shaft and, in many instances, additional gear ranges.

<span class="mw-page-title-main">Limited-slip differential</span> Differential gearbox that limits the rotatational speed difference of output shafts

A limited-slip differential (LSD) is a type of differential that allows its two output shafts to rotate at different speeds but limits the maximum difference between the two shafts. Limited-slip differentials are often known by the generic trademark Positraction, a brand name owned by General Motors and originally used for its Chevrolet branded vehicles.

<span class="mw-page-title-main">Quattro (four-wheel-drive system)</span> Sub-brand by Audi

Quattro is the trademark used by the automotive brand Audi to indicate that all-wheel drive (AWD) technologies or systems are used on specific models of its automobiles.

<span class="mw-page-title-main">Front-engine, front-wheel-drive layout</span> Term used in automotive technology

In automotive design, a front-engine, front-wheel-drive (FWD) layout, or FF layout, places both the internal combustion engine and driven roadwheels at the front of the vehicle.

<span class="mw-page-title-main">Transfer case</span> Drivetrain used in four-wheel drive vehicles

A transfer case is a part of the drivetrain of four-wheel-drive, all-wheel-drive, and other multiple powered axle vehicles. The transfer case transfers power from the transmission to the front and rear axles by means of drive shafts. It also synchronizes the difference between the rotation of the front and rear wheels(only high-speed 4wd-Awd systems), and may contain one or more sets of low range gears for off-road use.

<span class="mw-page-title-main">Locking differential</span> Mechanical component which forces two transaxial wheels to spin together

A locking differential is a mechanical component, commonly used in vehicles, designed to overcome the chief limitation of a standard open differential by essentially "locking" both wheels on an axle together as if on a common shaft. This forces both wheels to turn in unison, regardless of the traction available to either wheel individually.

<span class="mw-page-title-main">Ford Expedition</span> Motor vehicle

The Ford Expedition is a full-size three-row SUV, manufactured by Ford. Introduced for the 1997 model year as the successor of the Ford Bronco, the Expedition was the first full-size Ford SUV sold with a four-door body. For its entire production life, the Ford Expedition has been derived from the corresponding generation of the Ford F-150 in production, sharing some body and mechanical components. The fourth-generation Ford Expedition began production for the 2018 model year. Similar to the configuration of the Chevrolet Tahoe and Suburban, the Ford Expedition is sold in regular and extended lengths ; sold since 2007, the latter functionally serves as the replacement for the Ford Excursion.

<span class="mw-page-title-main">4Matic</span> All-wheel-drivetrain developed by Mercedes-Benz

4Matic is the marketing name of an all-wheel drive system developed by Mercedes-Benz. It is designed to increase traction in slippery conditions. With the introduction of the 2017 E 63 S sedan, Mercedes-AMG announced a performance-oriented variant of the system called AMG Performance 4MATIC+.

<span class="mw-page-title-main">BMW xDrive</span> Four-wheel drive system developed by BMW

BMW xDrive is the marketing name for the all-wheel drive system found on various BMW models since 2003. The system uses an electronically actuated clutch-pack differential to vary the torque between the front and rear axles. Models with the DPC torque vectoring system also have a planetary gearset to overdrive an axle or rear wheel as required.

ATTESA is a four-wheel drive system used in some automobiles produced by the Japanese automaker Nissan, including some models under its luxury marque Infiniti.

Jeep uses a variety of four-wheel drive systems on their vehicles. These range from basic part-time systems that require the driver to move a control lever to send power to four wheels, to permanent four-wheel systems that monitor and sense traction needs at all four wheels automatically under all conditions.

Super Handling-All Wheel Drive (SH-AWD) is a full-time, fully automatic, all-wheel drive traction and handling system, which combines front-rear torque distribution control with independently regulated torque distribution to the left and right rear wheels. This way the system freely distributes the optimum amount of torque to all four wheels according to the driving conditions." The system was announced in April 2004, and was introduced in the North American market in the second generation 2005 model year Acura RL, and in Japan as the fourth generation Honda Legend.

<span class="mw-page-title-main">Super Select</span>

Super Select is the brand name of a four-wheel drive system produced by Mitsubishi Motors, used worldwide except for North America, where it was initially known as Active-Trac. It was first introduced in 1991 with the then-new second generation of the Mitsubishi Pajero.

<span class="mw-page-title-main">Front-engine, four-wheel-drive layout</span> Automotive configuration

In automotive design, an F4, or front-engine, four-wheel drive (4WD) layout places the internal combustion engine at the front of the vehicle and drives all four roadwheels. This layout is typically chosen for better control on many surfaces, and is an important part of rally racing, as well as off-road driving. In terms of racing purposes, whether it be on-road or off-road, can be described as follows,

A team that pursues the Weak LS4WD architecture will minimize the development cost of the front-wheel drive system at the expense of having a larger rear powertrain. The Weak architecture produces a vehicle with a large powersplit between the front and rear powertrains, while the Strong architecture recommends a vehicle with more similar power and torque requirements for the front and rear.

S-AWC is the brand name of an advanced full-time four-wheel drive system developed by Mitsubishi Motors. The technology, specifically developed for the new 2007 Lancer Evolution, the 2010 Outlander, the 2014 Outlander, the Outlander PHEV and the Eclipse Cross have an advanced version of Mitsubishi Motors' AWC system. Mitsubishi Motors first exhibited S-AWC integration control technology in the Concept-X model at the 39th Tokyo Motor Show in 2005. According to Mitsubishi Motors, "the ultimate embodiment of the company's AWC philosophy is the S-AWC system, a 4WD-based integrated vehicle dynamics control system".

All Wheel Control (AWC) is the brand name of a four-wheel drive (4WD) system developed by Mitsubishi Motors. The system was first incorporated in the 2001 Lancer Evolution VII. Subsequent developments have led to S-AWC (Super All Wheel Control), developed specifically for the new 2007 Lancer Evolution. The system is referred by the company as its unique 4-wheel drive technology umbrella, cultivated through its motor sports activities and long history in rally racing spanning almost half a century.

<span class="mw-page-title-main">Drivetrain</span> Group of components that deliver power to the driving wheels

A drivetrain is the group of components that deliver mechanical power from the prime mover to the driven components. In automotive engineering, the drivetrain is the components of a motor vehicle that deliver power to the drive wheels. This excludes the engine or motor that generates the power. In marine applications, the drive shaft will drive a propeller, thruster, or waterjet rather than a drive axle, while the actual engine might be similar to an automotive engine. Other machinery, equipment and vehicles may also use a drivetrain to deliver power from the engine(s) to the driven components.

The Symmetrical All-Wheel Drive is a full-time four-wheel drive system developed by the Japanese automobile manufacturer Subaru. The SAWD system consists of a longitudinally mounted boxer engine coupled to a symmetrical drivetrain with equal length half-axles. The combination of the symmetrical layout with a flat engine and a transmission balanced over the front axle provides optimum weight distribution with low center of gravity, improving the steering characteristics of the vehicle. Ever since 1986, most of the Subaru models sold in the international market are equipped with the SAWD system by default, with the rear wheel drive BRZ and kei cars as the exceptions.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "4-wheel drive steps back to the future". www.designnews.com. Retrieved 2012-09-10.
  2. 1 2 3 "New Ford Expedition Features Borg-Warner Transfer Case". www.thefreelibrary.com. Retrieved 2012-09-11.
  3. "BorgWarner Products". www.borgwarner.com. Retrieved 2012-09-10.
  4. 1 2 3 "Control Trac® delivers automatic torque split, low-range". www.ford-trucks.com. Retrieved 2012-09-10.
  5. "2011 Ford Explorer Overview". www.ford-trucks.com. Retrieved 2012-09-10.
  6. "Intelligent 4WD". www.ford.com. Retrieved 2012-09-10.
  7. 1 2 3 4 5 "2003 Ford Expedition Overview". www.ford-trucks.com. Retrieved 2012-09-10.
  8. 1 2 3 4 "2002 Ford Explorer Overview/Powertrain". www.ford-trucks.com. Retrieved 2012-09-10.