Cordyceps locustiphila | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Fungi |
Division: | Ascomycota |
Class: | Sordariomycetes |
Order: | Hypocreales |
Family: | Cordycipitaceae |
Genus: | Cordyceps |
Species: | C. locustiphila |
Binomial name | |
Cordyceps locustiphila Henn. (1904) | |
Synonyms | |
|
Cordyceps locustiphila is the basionym and teleomorph of the fungi Beauveria locustiphila, a species of fungus in the family Cordycipitaceae. and is a species within the genus Cordyceps. It was originally described in by Henn in 1904. [1] C. locustiphila is an entomopathogen and obligate parasite of the grasshopper species within the genus Colpolopha or Tropidacris, and as such is endemic to South America. The scientific name is derived from its close relationship with its host, being named after locusts. The fungi was renamed to Beauveria locustiphila in 2017 [2] following research into the family Cordycipitaceae. Following the loss of the species type specimen, new studies were conducted that now recommend that the fungi be divided into 3 species. C. locustiphila, C. diapheromeriphila, and C. acridophila.
The fruiting bodies of Cordyceps locustiphila form gregariously as clubs through breaks and joints in the chitinous shell of their host locusts. The stipe of the club is a fleshy greyish yellow with a length of 1–4 mm long and a diameter of 1–2 mm. The stromata formed on the ends of the club are bright yellow and have a simple, claviform, body plan, ranging from 3–5 mm in length and 2–4 mm in width. Ovoid perithecia are semi-immersed within the walls of the stoma, and have a wall smaller than 50 micrometers.
The anamorph of this fungi forms as an ocher yellow hyphal network which turns white at the external margins. The hyphae have a diameter of 1.5–2.5 nanometers. The fungi produces conidiophores with acremonium-like phialides that are simple and erect from the hyphal mat. Conidia are cylindrical in appearance, and are produced solitarily, or via the slime drop method. This asexual phase is what spurned the reclassification as a Beauveria species
C. locustiphila has evolved to be closely dependent on its host species, grasshoppers in the genus Colpolopha. As such, it is limited to the range of this grasshopper, and are endemic to South America, including regions of north-central Argentina, Northern Chile, Southern Brazil, and south east Peru.
The fungus colonizes the bodies of its host when ascospores become trapped on the chitin exoskeleton by the grasshoppers fine hairs and begin to germinate. As the mycelium develops, it breaks through the exoskeleton to invade the interior cavities of the insects body for protection during growth. The fungi then uses the insect as a source of nutrients and shelter for its lifespan.
When it is time to reproduce and disperse spores, the mycelium produces stroma that emerge through gaps and joints in the exoskeleton. Ascospores are then released by semi-embedded Perithecia in the stroma's wall to be dispersed by the wind. Similar to other Cordyceps species, C. locustiphila has shown to be able to influence the neurological processes of its host to "brainwash" the locust into positioning itself where the wind currents and environments are most beneficial for spore dispersion.
C. locustiphila is a species of specific scientific interest due to its abilities as an entomopathogen. C. locustiphila poses no threat to human beings, but the locust it targets can pose severe threats to human agriculture and lead to famines in South America. [3] As such, C. locustiphila has been the subject of research both for its mechanism of breaching chitin defenses in general, as well as possible use as a biological alternative to pesticides in order to maintain agricultural security while reducing pollutants.
Unlike other Cordyceps species, which have been used in traditional medicine across Asia, C. locustiphila has not been recorded as being used as a medicine or nutrient source at this time.
C. locustiphila was originally classified in 1904, [4] but in 2017 was determined to be the teleomorph of Beauveria locustiphila, a species within a Cordyceps clade of asexually reproducing entomopathogens, Beauveria . This confusion is derived from the variations of sexual and asexual stages of the species lifecycle, as is a part of the larger changes taking place amongst fungal taxonomy due to the increase of DNA testing and research. Due to taxonomic standard changes implemented as part of the "One Fungus One Name" initiative B. locustiphila will not unseat the name C. locustiphila, being the more widespread teleomorph name of the species until such time it is ratified by the International Botanical Congress
Following further research of C. locustiphila's interactions with its host species, as well as genetic testing of the SSU, LSU, TEF, RPB1 and RPB2 nuclear loci, it has been recommended that the species be further divided into 3 species, Cordyceps locustiphila, Cordyceps diapheromeriphila , and Cordyceps acridophila [5] and/or Beauveria locustiphila , Beauveria diapheromeriphila and Beauveria acridophila . [6]
These taxonomical complexities have been marked as a possible obstacle in C. locustiphila's use as a biological pesticide due to the further interactions and hybridizations the species would undergo should it be propagated widely.
Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.
An ascocarp, or ascoma, is the fruiting body (sporocarp) of an ascomycete phylum fungus. It consists of very tightly interwoven hyphae and millions of embedded asci, each of which typically contains four to eight ascospores. Ascocarps are most commonly bowl-shaped (apothecia) but may take on a spherical or flask-like form that has a pore opening to release spores (perithecia) or no opening (cleistothecia).
Ophiocordyceps sinensis, known colloquially as caterpillar fungus, is an entomopathogenic fungus in the family Ophiocordycipitaceae. It is mainly found in the meadows above 3,500 metres (11,500 ft) on the Tibetan Plateau in Tibet and the Himalayan regions of Bhutan and Nepal. It parasitizes larvae of ghost moths and produces a fruiting body which is valued in traditional Chinese medicine as an aphrodisiac. Caterpillar fungus contains the compound cordycepin, an adenosine derivative. However, the fruiting bodies harvested in nature usually contain high amounts of arsenic and other heavy metals, so they are potentially toxic and sales have been strictly regulated by China's State Administration for Market Regulation since 2016.
Cordyceps is a genus of ascomycete fungi that includes about 600 worldwide species. Diverse variants of cordyceps have had more than 1,500 years of use in Chinese medicine. Most Cordyceps species are endoparasitoids, parasitic mainly on insects and other arthropods ; a few are parasitic on other fungi.
Beauveria bassiana is a fungus that grows naturally in soils throughout the world and acts as a parasite on various arthropod species, causing white muscardine disease; it thus belongs to the group of entomopathogenic fungi. It is used as a biological insecticide to control a number of pests, including termites, thrips, whiteflies, aphids and various beetles. Its use in the control of bedbugs and malaria-transmitting mosquitos is under investigation.
An entomopathogenic fungus is a fungus that can kill or seriously disable insects.
Metarhizium robertsii – formerly known as M. anisopliae, and even earlier as Entomophthora anisopliae (basionym) – is a fungus that grows naturally in soils throughout the world and causes disease in various insects by acting as a parasitoid. Ilya I. Mechnikov named it after the insect species from which it was originally isolated – the beetle Anisoplia austriaca. It is a mitosporic fungus with asexual reproduction, which was formerly classified in the form class Hyphomycetes of the phylum Deuteromycota.
Erysiphales are an order of ascomycete fungi. The order contains one family, Erysiphaceae. Many of them cause plant diseases called powdery mildew.
Paecilomyces is a genus of fungi. A number of species in this genus are plant pathogens.
This is a glossary of some of the terms used in phytopathology.
Epichloë is a genus of ascomycete fungi forming an endophytic symbiosis with grasses. Grass choke disease is a symptom in grasses induced by some Epichloë species, which form spore-bearing mats (stromata) on tillers and suppress the development of their host plant's inflorescence. For most of their life cycle however, Epichloë grow in the intercellular space of stems, leaves, inflorescences, and seeds of the grass plant without incurring symptoms of disease. In fact, they provide several benefits to their host, including the production of different herbivore-deterring alkaloids, increased stress resistance, and growth promotion.
Hyphomycetes are a form classification of fungi, part of what has often been referred to as fungi imperfecti, Deuteromycota, or anamorphic fungi. Hyphomycetes lack closed fruit bodies, and are often referred to as moulds. Most hyphomycetes are now assigned to the Ascomycota, on the basis of genetic connections made by life-cycle studies or by phylogenetic analysis of DNA sequences; many remain unassigned phylogenetically.
Xylaria polymorpha, commonly known as dead man's fingers, is a saprobic fungus with geographic distribution across all 6 inhabited continents. It is a common inhabitant of forest and woodland areas, usually growing from the bases of rotting or injured tree stumps and decaying wood. It has also been known to colonize substrates like woody legume pods, petioles, and herbaceous stems. It is characterized by its elongated upright, clavate, or strap-like stromata poking up through the ground, much like fingers. The genus Xylaria contains about 100 species of cosmopolitan fungi. Polymorpha means "many forms". As its name suggests, it has a variable but often club-shaped fruiting body (stroma) resembling burned wood.
Beauveria is a genus of asexually-reproducing fungi allied with the ascomycete family Cordycipitaceae. Its several species are typically insect pathogens. The sexual states (teleomorphs) of Beauveria species, where known, are species of Cordyceps.
Ophiocordyceps unilateralis, commonly known as zombie-ant fungus, is an insect-pathogenic fungus, discovered by the British naturalist Alfred Russel Wallace in 1859, and currently found predominantly in tropical forest ecosystems. O. unilateralis infects ants of the tribe Camponotini, with the full pathogenesis being characterized by alteration of the behavioral patterns of the infected ant. Infected hosts leave their canopy nests and foraging trails for the forest floor, an area with a temperature and humidity suitable for fungal growth; they then use their mandibles to attach themselves to a major vein on the underside of a leaf, where the host remains after its eventual death. The process, leading up to mortality, takes 4–10 days, and includes a reproductive stage where fruiting bodies grow from the ant's head, rupturing to release the fungus's spores. O. unilateralis is, in turn, also susceptible to fungal infection itself, an occurrence that can limit its impact on ant populations, which has otherwise been known to devastate ant colonies.
Metarhizium is a genus of entomopathogenic fungi in the Clavicipitaceae family. With the advent of genetic profiling, placing these fungi in proper taxa has now become possible. Most turn out to be the asexual forms (anamorphs) of fungi in the phylum Ascomycota, including Metacordyceps spp.
Xylaria hypoxylon is a species of bioluminescent fungus in the family Xylariaceae. It is known by a variety of common names, such as the candlestick fungus, the candlesnuff fungus, carbon antlers, or the stag's horn fungus. The fruit bodies, characterized by erect, elongated black branches with whitened tips, typically grow in clusters on decaying hardwood. The fungus can cause a root rot in hawthorn and gooseberry plants.
The Cordycipitaceae are a family of parasitic fungi in the Ascomycota, class Sordariomycetes and order Hypocreales. The family was first published in 1969 by mycologist Hanns Kreisel, but the naming was invalid according to the code of International Code of Nomenclature for algae, fungi, and plants. It was validly published in 2007.
Botryotrichum piluliferum is a fungal species first identified in 1885 by Saccardo and Marchal. It was discovered to be the asexual state of a member of the ascomycete genus, Chaetomium. The name B. piluliferum now applies to the fungus in all its states. B. piluliferum has been found worldwide in a wide range of habitats such as animal dung and vegetation. The colonies of this fungus start off white and grow rapidly to a brown colour. The conidia are smooth and white. B. piluliferum grows optimally at a temperature of 25-30 °C and a pH of 5.5.
Cordyceps gunni is a species of fungus in the family Cordycipitaceae, and is of the genus Cordyceps. It was originally found and recorded by Gunn in Tasmania and named as Sphaeria gunnii and later moved into the Cordyceps genus and renamed Cordyceps gunnii. This fungus and its sisters in the genus Cordyceps are known for growing out of insect bodies. C. gunnii can be found at ground level poking out of caterpillar burrows, attached to a caterpillar's head.