Corn ethanol is ethanol produced from corn biomass and is the main source of ethanol fuel in the United States, mandated to be blended with gasoline in the Renewable Fuel Standard. Corn ethanol is produced by ethanol fermentation and distillation. It is debatable whether the production and use of corn ethanol results in lower greenhouse gas emissions than gasoline. [1] [2] Approximately 45% of U.S. corn croplands are used for ethanol production. [3]
This section needs expansion. You can help by adding to it. (November 2018) |
Since 2001, corn ethanol production has increased by more than several times. [4] Out of 9.50 billions of bushels of corn produced in 2001, 0.71 billions of bushels were used to produce corn ethanol. Compared to 2018, out of 14.62 billions of bushels of corn produced, 5.60 billion bushels were used to produce corn ethanol, reported by the United States Department of Energy. Overall, 94% of ethanol in the United States is produced from corn. [5]
Currently, corn ethanol is mainly used in blends with gasoline to create mixtures such as E10, E15, and E85. Ethanol is mixed into more than 98% of United States gasoline to reduce air pollution. [5] Corn ethanol is used as an oxygenate when mixed with gasoline. E10 and E15 can be used in all engines without modification. However, blends like E85, with a much greater ethanol content, require significant modifications to be made before an engine can run on the mixture without damaging the engine. [6] Some vehicles that currently use E85 fuel, also called flex fuel, include, the Ford Focus, Dodge Durango, and Toyota Tundra, among others.[ citation needed ]
The future use of corn ethanol as a main gasoline replacement is unknown. Corn ethanol has yet to be proven to be as cost effective as gasoline due to corn ethanol being much more expensive to create compared to gasoline. [6] Corn ethanol has to go through an extensive milling process before it can be used as a fuel source. One major drawback with corn ethanol, is the energy returned on energy invested (EROI), meaning the energy outputted in comparison to the energy required to output that energy. Compared to oil, with an 11:1 EROI, corn ethanol has a much lower EROI of 1.5:1, which, in turn, also provides less mileage per gallon compared to gasoline. [7] In the future, as technology advances and oil becomes less abundant, the process of milling may require less energy, resulting in an EROI closer to that of oil. Another serious problem with corn ethanol as a replacement for gasoline, is the engine damage on standard vehicles. E10 contains ten percent ethanol and is acceptable for most vehicles on the road today, while E15 contains fifteen percent ethanol and is usually prohibited for cars built before 2001. [5] However, with the hope to replace gasoline in the future, E85, which contains 85% ethanol, requires engine modification before an engine can last while processing a high volume of ethanol for an extended period of time. Therefore, most older and modern day vehicles would become obsolete without proper engine modifications to handle the increase in corrosiveness from the high volume of ethanol. Also, most gas stations do not offer refueling of E85 vehicles. The United States Department of Energy reports that only 3,355 gas stations, out of 168,000, across the United States, offer ethanol refueling for E85 vehicles. [8]
There are two main types of corn ethanol production: dry milling and wet milling, which differ in the initial grain treatment method and co-products. [9]
The vast majority (≈90%) of corn ethanol in the United States is produced by dry milling. [10] In the dry milling process, the entire corn kernel is ground into flour, or "mash," which is then slurried by adding water. [11] Enzymes are added to the mash to hydrolyze the starch into simple sugars. Ammonia is added to control the pH and as a nutrient for the yeast, which is added later. The mixture is processed at high-temperatures to reduce the bacteria levels. The mash is transferred and cooled in fermenters. Yeast are added, which ferment the sugars into ethanol and carbon dioxide. The entire process takes 40 to 50 hours, during which time the mash is kept cool and agitated to promote yeast activity. The mash is then transferred to distillation columns, where the ethanol is removed from the silage. The ethanol is dehydrated to about 200 proof using a molecular sieve system. A denaturant such as gasoline is added to render the product undrinkable. The product is then ready to ship to gasoline retailers or terminals. The remaining silage is processed into a highly nutritious livestock feed known as distiller's dried grains and solubles (DDGS). [12] The carbon dioxide released from the process is used to carbonate beverages and to manufacture dry ice .[ citation needed ]
In wet milling, the corn grain is separated into components by steeping in dilute sulfurous acid for 24 to 48 hours. [13] The slurry mix then goes through a series of grinders to separate out the corn germ. The remaining components of fiber, gluten, and starch are segregated using screen, hydroclonic, and centrifugal separators. The corn starch and remaining water can be fermented into ethanol through a similar process as dry milling, dried and sold as modified corn starch, or made into corn syrup. The gluten protein and steeping liquor are dried to make a corn gluten meal that is sold to the livestock industry. The heavy steep water is also sold as a feed ingredient and used as an alternative to salt in the winter months. Corn oil is also extracted and sold.[ citation needed ]
Corn ethanol results in lower greenhouse gas emissions than gasoline and is fully biodegradable, unlike some fuel additives such as MTBE. [14] However, because energy to run many U.S. distilleries comes mainly from coal plants, there has been considerable debate on the sustainability of corn ethanol in replacing fossil fuels. Additional controversy relates to the large amount of arable land required for crops and its impact on grain supply and direct and indirect land use change effects. Other issues relate to pollution, water use for irrigation and processing, energy balance, and emission intensity for the full life cycle of ethanol production. [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
Several full life cycle studies have found that corn ethanol reduces well-to-wheel greenhouse gas emissions by up to 50 percent compared to gasoline. [14] [25] [26] [27] However, more recent research based on an analysis of data from the first eight years of the US Renewable Fuel Standard’s implementation suggests that corn ethanol produces more carbon emissions per unit of energy than gasoline, when factoring in fertilizer use and land use change. [28]
Ethanol-blended fuels currently in the market – whether E10 or E85 – meet stringent tailpipe emission standards. [14]
One of the main controversies involving corn ethanol production is the necessity for arable cropland to grow the corn for ethanol, which is then not available to grow corn for human or animal consumption. [29] In the United States, 40% of the acreage designated for corn grain is used for corn ethanol production, of which 25% was converted to ethanol after accounting for co-products, leaving only 60% of the crop yield for human or animal consumption. [30]
Growing corn to fuel internal combustion vehicles is a highly inefficient use of land. A solar farm generating electricity to power an electric vehicle would power around 85 times as much distance as corn ethanol grown on the same area. [31]
The Renewable Fuels Association (RFA), the ethanol industry's lobbying group, claims that ethanol production increases the price of corn by increasing demand. The RFA claims that ethanol production has positive economic effect for US farmers, but it does not elaborate on the effect for other populations where field corn is part of the staple diet. An RFA lobby document states that "In a January 2007 statement, the USDA Chief Economist stated that farm program payments were expected to be reduced by some $6 billion due to the higher value of a bushel of corn. [32] Corn production in 2009 reached over 13.2 billion bushels, and a per acre yield jumped to over 165 bushels per acre. [33] In the United States, 5.05 billion bushels of corn were used for ethanol production out of 14.99 billion bushels produced in 2020, according to USDA data. [34] According to the U.S. Department of Energy's Alternative Fuels Data Center, "The increased ethanol [production] seems to have come from the increase in overall corn production and a small decrease in corn used for animal feed and other residual uses. The amount of corn used for other uses, including human consumption, has stayed fairly consistent from year to year." [34] This does not prove there was not an impact on food supplies: Since U.S. corn production doubled (approximately) between 1987 and 2018, it is probable that some cropland previously used to grow other food crops is now used to grow corn. It is also possible or probable that some marginal land has been converted or returned to agricultural use. That may have negative environmental impacts.[ citation needed ]
Remnants from food production such as corn stover could be used to produce ethanol instead of food corn. Ethanol derived from sugar-beet as used in Europe or sugar-cane in Brazil has up to 80% reduction in well-to-wheel carbon dioxide. The use of cellulosic biomass to produce ethanol is considered second generation biofuel that are considered by some to be a solution to the food versus fuel debate, and has the potential to cut life cycle greenhouse gas emissions by up to 86 percent relative to gasoline. [14]
Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and possible deforestation and biodiversity loss as a result of biofuel production.
Ethanol fuel is fuel containing ethyl alcohol, the same type of alcohol as found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline.
Cellulosic ethanol is ethanol produced from cellulose rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a biofuel. The carbon dioxide that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is burned, so cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels.
E85 is an abbreviation typically referring to an ethanol fuel blend of 85% ethanol fuel and 15% gasoline or other hydrocarbon by volume.
Various alcohols are used as fuel for internal combustion engines. The first four aliphatic alcohols are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.
Brazil is the world's second largest producer of ethanol fuel. Brazil and the United States have led the industrial production of ethanol fuel for several years, together accounting for 85 percent of the world's production in 2017. Brazil produced 26.72 billion liters, representing 26.1 percent of the world's total ethanol used as fuel in 2017.
The United States became the world's largest producer of ethanol fuel in 2005. The U.S. produced 15.8 billion U.S. liquid gallons of ethanol fuel in 2019, and 13.9 billion U.S. liquid gallons in 2011, an increase from 13.2 billion U.S. liquid gallons in 2010, and up from 1.63 billion gallons in 2000. Brazil and U.S. production accounted for 87.1% of global production in 2011. In the U.S, ethanol fuel is mainly used as an oxygenate in gasoline in the form of low-level blends up to 10 percent, and, increasingly, as E85 fuel for flex-fuel vehicles. The U.S. government subsidizes ethanol production.
In order to create ethanol, all biomass needs to go through some of these steps: it needs to be grown, collected, dried, fermented, and burned. All of these steps require resources and an infrastructure. The ratio of the energy released by burning the resulting ethanol fuel to the energy used in the process, is known as the ethanol fuel energy balance and studied as part of the wider field of energy economics. Figures compiled in a 2007 National Geographic Magazine article point to modest results for corn (maize) ethanol produced in the US: 1 unit of energy input equals 1.3 energy units of corn ethanol energy. The energy balance for sugarcane ethanol produced in Brazil is much more favorable, 1 to 8. Over the years, however, many reports have been produced with contradicting energy balance estimates. A 2006 University of California Berkeley study, after analyzing six separate studies, concluded that producing ethanol from corn uses marginally less petroleum than producing gasoline.
The United States produces mainly biodiesel and ethanol fuel, which uses corn as the main feedstock. The US is the world's largest producer of ethanol, having produced nearly 16 billion gallons in 2017 alone. The United States, together with Brazil accounted for 85 percent of all ethanol production, with total world production of 27.05 billion gallons. Biodiesel is commercially available in most oilseed-producing states. As of 2005, it was somewhat more expensive than fossil diesel, though it is still commonly produced in relatively small quantities, in comparison to petroleum products and ethanol fuel.
Renewable fuels are fuels produced from renewable resources. Examples include: biofuels, Hydrogen fuel, and fully synthetic fuel produced from ambient carbon dioxide and water. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.
Biofuel is fuel that is produced from organic matter (biomass), including plant materials and animal waste. It is considered a renewable source of energy that can assist in reducing carbon emissions. The two main types of biofuel currently being produced in Australia are biodiesel and bioethanol, used as replacements for diesel and petrol (gasoline) respectively. As of 2017 Australia is a relatively small producer of biofuels, accounting for 0.2% of world bioethanol production and 0.1% of world biodiesel production.
Biofuels are renewable fuels that are produced by living organisms (biomass). Biofuels can be solid, gaseous or liquid, which comes in two forms: ethanol and biodiesel and often replace fossil fuels. Many countries now use biofuels as energy sources, including Sweden. Sweden has one of the highest usages of biofuel in all of Europe, at 32%, primarily due to the widespread commitment to E85, bioheating and bioelectricity.
Food versus fuel is the dilemma regarding the risk of diverting farmland or crops for biofuels production to the detriment of the food supply. The biofuel and food price debate involves wide-ranging views and is a long-standing, controversial one in the literature. There is disagreement about the significance of the issue, what is causing it, and what can or should be done to remedy the situation. This complexity and uncertainty are due to the large number of impacts and feedback loops that can positively or negatively affect the price system. Moreover, the relative strengths of these positive and negative impacts vary in the short and long terms, and involve delayed effects. The academic side of the debate is also blurred by the use of different economic models and competing forms of statistical analysis.
The Renewable Fuel Standard(RFS) is an American federal program that requires transportation fuel sold in the United States to contain a minimum volume of renewable fuels. It originated with the Energy Policy Act of 2005 and was expanded and extended by the Energy Independence and Security Act of 2007. Research published by the Government Accountability Office in November 2016 found the program unlikely to meet its goal of reducing greenhouse gas emissions due to limited current and expected future production of advanced biofuels.
Issues relating to biofuel are social, economic, environmental and technical problems that may arise from biofuel production and use. Social and economic issues include the "food vs fuel" debate and the need to develop responsible policies and economic instruments to ensure sustainable biofuel production. Farming for biofuels feedstock can be detrimental to the environment if not done sustainably. Environmental concerns include deforestation, biodiversity loss and soil erosion as a result of land clearing for biofuels agriculture. While biofuels can contribute to reduction in global carbon emissions, indirect land use change for biofuel production can have the inverse effect. Technical issues include possible modifications necessary to run the engine on biofuel, as well as energy balance and efficiency.
The use of biofuels varies by region. The world leaders in biofuel development and use are Brazil, United States, France, Sweden and Germany.
The fleet of flexible-fuel vehicles in the United States is the second largest in the world after Brazil, and there were more than 21 million 85 flex-fuel vehicles registered in the country by the end of 2017. Despite the growing fleet of E85 flex-fuel vehicles, actual use of ethanol fuel is limited due to the lack of E85 refueling infrastructure and also because many North American flex-fuel car owners were not aware they owned an E85 flex-fuel vehicle. Flex-fuel vehicles are common in the Midwest, where corn is a major crop and is the primary feedstock for ethanol fuel production. Also the U.S. government has been using flex-fuel vehicles for many years.
United States policy in regard to biofuels, such as ethanol fuel and biodiesel, began in the early 1990s as the government began looking more intensely at biofuels as a way to reduce dependence on foreign oil and increase the nation's overall sustainability. Since then, biofuel policies have been refined, focused on getting the most efficient fuels commercially available, creating fuels that can compete with petroleum-based fuels, and ensuring that the agricultural industry can support and sustain the use of biofuels.
The world's top ethanol fuel producers in 2011 were the United States with 13.9 billion U.S. liquid gallons (bg) and Brazil with 5.6 bg, accounting together for 87.1% of world production of 22.36 billion US gallons. Strong incentives, coupled with other industry development initiatives, are giving rise to fledgling ethanol industries in countries such as Germany, Spain, France, Sweden, India, China, Thailand, Canada, Colombia, Australia, and some Central American countries.
The production of corn plays a major role in the economy of the United States. The US is the largest corn producer in the world, with 96,000,000 acres (39,000,000 ha) of land reserved for corn production. Corn growth is dominated by west/north central Iowa and east central Illinois. Approximately 13% of its annual yield is exported.
{{cite web}}
: CS1 maint: multiple names: authors list (link)Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization.