It is proposed that this article be deleted because of the following concern:
If you can address this concern by improving, copyediting, sourcing, renaming, or merging the page, please edit this page and do so. You may remove this message if you improve the article or otherwise object to deletion for any reason. Although not required, you are encouraged to explain why you object to the deletion, either in your edit summary or on the talk page. If this template is removed, do not replace it . The article may be deleted if this message remains in place for seven days, i.e., after 12:23, 20 January 2022 (UTC). Find sources: "Correlation database" – news · newspapers · books · scholar · JSTOR Nominator: Please consider notifying the author/project: {{ subst:proposed deletion notify |Correlation database|concern=Correlation database is not a standard term or concept - no references to it can be found online, all sources from this article come from 2008 and seem related to a defunct company. Discussions of potential deletion have started in 2010 in the Talk section}} ~~~~ |
A correlation database is a database management system (DBMS) that is data-model-independent and designed to efficiently handle unplanned, ad hoc queries in an analytical system environment.
Unlike row-oriented relational database management systems, which use a records-based storage approach, or column-oriented databases which use a column-based storage method, a correlation database uses a value-based storage (VBS) architecture in which each unique data value is stored only once and an auto-generated indexing system maintains the context for all values. [1]
Because a correlation DBMS stores each unique data value only once, the physical database size is significantly smaller than relational or column-oriented databases, without the use of data compression techniques. Above approximately 30GB, a correlation DBMS may become smaller than the raw data set.[ citation needed ]
The VBS model used by a CDBMS consists of three primary physical sets of objects that are stored and managed:
In the VBS model, each unique value in the raw data is stored only once; therefore, the data is always normalized at the level of unique values. [2] This eliminates the need to normalize data sets in the logical schema.
Data values are stored together in ordered sets based on data types: all integers in one set, characters in another, etc. This optimizes the data handling processes that access the values.
In addition to typical data values, the data value store contains a special type of data for storing relationships between tables. This functions similarly to foreign keys in RDBMS structures, but with a CDBMS, the relationship is known by the dictionary and stored as a data value, making navigation between tables completely automatic.
The data dictionary contains typical metadata plus additional statistical data about the tables, columns and occurrences of values in the logical schema. It also maintains information about the relationships between the logical tables. The index and linking storage includes all of the data used to locate the contents of a record from the ordered values in the data store.
While not a RAM-based storage system, a CDBMS is designed to use as much RAM as the operating system can provide. For large databases, additional RAM improves performance. Generally, 4GB of RAM will provide optimized access times up to about 100 million records. 8GB of RAM is adequate for databases up to 10 times that size. [3] Because the incremental RAM consumed decreases as the database grows, 16GB of RAM will generally support databases containing up to approximately 20 billion records.
The sample records shown below illustrate the physical differences in the storage structures used in relational, column-oriented and correlation databases.
Cust ID | Name | City | State |
---|---|---|---|
12222 | ABC Corp | Minneapolis | MN |
19434 | A1 Mfg | Duluth | MN |
20523 | J&J Inc | St. Paul | MN |
The record-based structure used in an RDBMS stores elements in the same row adjacent to each other. Variations like clustered indexing may change the sequence of the rows, but all rows, columns and values will be stored as in the table. The above table might be stored as:
12222,ABC Corp,Minneapolis,MN;19434,A1 Mfg,Duluth,MN;20523,J&J Inc,St. Paul,MN
In the column-based structure, elements of the same column are stored adjacent to each other. Consecutive duplicates within a single column may be automatically removed or compressed efficiently.
12222,19434,20523;ABC Corp,A1 Mfg,J&J Inc;Minneapolis,Duluth,St.Paul;MN,MN,MN
In the VBS structure used in a CDBMS, each unique value is stored once and given an abstract (numeric) identifier, regardless of the number of occurrences or locations in the original data set. The original dataset is then constructed by referencing those logical identifiers. The correlation index may resemble the storage below. Note that the value "MN" which occurs multiple times in the data above is only included once. As the amount of repeat data grows, this benefit multiplies.
1:12222,2:19434,3:20523,4:ABC Corp,5:A1 Mfg,6:J&J Inc,7:Minneapolis,8:Duluth,9:St.Paul,10:MN
The records in our example table above can then be expressed as:
11:[1,4,7,10],12:[2,5,8,10],13:[3,6,9,10]
This correlation process is a form of database normalization. Just as one can achieve some benefits of column-oriented storage within an RDBMS, so too can one achieve some benefits of the correlation database through database normalization. However, in a traditional RDBMS this normalization process requires work in the form of table configuration, stored procedures, and SQL statements. We say that a database is a correlation database when it naturally expresses a fully normalized schema without this extra configuration. As a result, a correlation database may have more focused optimizations for this fully normalized structure.
This correlation process is similar to what occurs in a text-search oriented Inverted index.
For analytical data warehouse applications, a CDBMS has several advantages over alternative database structures. First, because the database engine itself indexes all data and auto-generates its own schema on the fly while loading, it can be implemented quickly and is easy to update. There is no need for physical pre-design and no need to ever restructure the database. Second, a CDBMS enables creation and execution of complex queries such as associative queries ("show everything that is related to x") that are difficult if not impossible to model in SQL. The primary advantage of the CDBMS is that it is optimized for executing ad hoc queries - queries not anticipated during the data warehouse design phase. [4]
A CDBMS has two drawbacks in comparison to database alternatives. Unlike relational databases, which can be used in a wide variety of applications, a correlation database is designed specifically for analytical applications and does not provide transaction management features; it cannot be used for transactional processing. Second, because it indexes all data during the load process, the physical load speed of a CDBMS is slower than relational or column-oriented structures. However, because it eliminates the need for logical or physical pre-design, the overall "time to use" of a CDBMS is generally similar to or somewhat faster than alternative structures.
In computing, a database is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spans formal techniques and practical considerations including data modeling, efficient data representation and storage, query languages, security and privacy of sensitive data, and distributed computing issues including supporting concurrent access and fault tolerance.
Denormalization is a strategy used on a previously-normalized database to increase performance. In computing, denormalization is the process of trying to improve the read performance of a database, at the expense of losing some write performance, by adding redundant copies of data or by grouping data. It is often motivated by performance or scalability in relational database software needing to carry out very large numbers of read operations. Denormalization differs from the unnormalized form in that denormalization benefits can only be fully realized on a data model that is otherwise normalized.
A relational database is a digital database based on the relational model of data, as proposed by E. F. Codd in 1970. A system used to maintain relational databases is a relational database management system (RDBMS). Many relational database systems have an option of using the SQL for querying and maintaining the database.
An object–relational database (ORD), or object–relational database management system (ORDBMS), is a database management system (DBMS) similar to a relational database, but with an object-oriented database model: objects, classes and inheritance are directly supported in database schemas and in the query language. In addition, just as with pure relational systems, it supports extension of the data model with custom data types and methods.
First normal form (1NF) is a property of a relation in a relational database. A relation is in first normal form if and only if no attribute domain has relations as elements. Or more informally, that no table column can have tables as values. Database normalization is the process of representing a database in terms of relations in standard normal forms, where first normal is a minimal requirement. SQL does not support creating or using table-valued columns, which means most relational databases will be in first normal form by necessity. Database systems which do not require first normal form are often called no sql systems.
The database schema is its structure described in a formal language supported by the database management system (DBMS). The term "schema" refers to the organization of data as a blueprint of how the database is constructed. The formal definition of a database schema is a set of formulas (sentences) called integrity constraints imposed on a database. These integrity constraints ensure compatibility between parts of the schema. All constraints are expressible in the same language. A database can be considered a structure in realization of the database language. The states of a created conceptual schema are transformed into an explicit mapping, the database schema. This describes how real-world entities are modeled in the database.
A physical data model is a representation of a data design as implemented, or intended to be implemented, in a database management system. In the lifecycle of a project it typically derives from a logical data model, though it may be reverse-engineered from a given database implementation. A complete physical data model will include all the database artifacts required to create relationships between tables or to achieve performance goals, such as indexes, constraint definitions, linking tables, partitioned tables or clusters. Analysts can usually use a physical data model to calculate storage estimates; it may include specific storage allocation details for a given database system.
Database design is the organization of data according to a database model. The designer determines what data must be stored and how the data elements interrelate. With this information, they can begin to fit the data to the database model. Database management system manages the data accordingly.
An XML database is a data persistence software system that allows data to be specified, and sometimes stored, in XML format. This data can be queried, transformed, exported and returned to a calling system. XML databases are a flavor of document-oriented databases which are in turn a category of NoSQL database.
The object–relational impedance mismatch is a set of conceptual and technical difficulties that are often encountered when a relational database management system (RDBMS) is being served by an application program written in an object-oriented programming language or style, particularly because objects or class definitions must be mapped to database tables defined by a relational schema.
Entity–attribute–value model (EAV) is a data model to encode, in a space-efficient manner, entities where the number of attributes that can be used to describe them is potentially vast, but the number that will actually apply to a given entity is relatively modest. Such entities correspond to the mathematical notion of a sparse matrix.
A column-oriented DBMS or columnar DBMS is a database management system (DBMS) that stores data tables by column rather than by row. Benefits include more efficient access to data when only querying a subset of columns, and more options for data compression. However, they are typically less efficient to insert new data.
A database model is a type of data model that determines the logical structure of a database. It fundamentally determines in which manner data can be stored, organized and manipulated. The most popular example of a database model is the relational model, which uses a table-based format.
Database tables and indexes may be stored on disk in one of a number of forms, including ordered/unordered flat files, ISAM, heap files, hash buckets, or B+ trees. Each form has its own particular advantages and disadvantages. The most commonly used forms are B-trees and ISAM. Such forms or structures are one aspect of the overall schema used by a database engine to store information.
Entity Framework (EF) is an open source object–relational mapping (ORM) framework for ADO.NET. It was originally shipped as an integral part of .NET Framework. Starting with Entity Framework version 6, it has been delivered separately from the .NET Framework.
A document-oriented database, or document store, is a computer program and data storage system designed for storing, retrieving and managing document-oriented information, also known as semi-structured data.
In computing, a graph database (GDB) is a database that uses graph structures for semantic queries with nodes, edges, and properties to represent and store data. A key concept of the system is the graph. The graph relates the data items in the store to a collection of nodes and edges, the edges representing the relationships between the nodes. The relationships allow data in the store to be linked together directly and, in many cases, retrieved with one operation. Graph databases hold the relationships between data as a priority. Querying relationships is fast because they are perpetually stored in the database. Relationships can be intuitively visualized using graph databases, making them useful for heavily inter-connected data.
SAND Nucleus CDBMS is a column-oriented DBMS software system optimized for business intelligence applications, delivering the data warehousing component, developed by SAND Technology Inc.
The following is provided as an overview of and topical guide to databases:
SingleStore is a distributed, relational, SQL database management system (RDBMS) that features ANSI SQL support and is known for speed in data ingest, transaction processing, and query processing. SingleStore was formerly known as MemSQL.