Crotalarieae

Last updated

Crotalarieae
Crotalaria verrucosa (Blue Rattlepod) W IMG 3297.jpg
Crotalaria verrucosa
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Fabales
Family: Fabaceae
Subfamily: Faboideae
Clade: Meso-Papilionoideae
Clade: Genistoids
Clade: Core Genistoids
Tribe: Crotalarieae
(Benth.) Hutch. [1]
Genera

See text

Synonyms [2]
  • Crotalarieae L.
  • Borbonieae Hutch. 1964
  • Genisteae subtribe Crotalariinae Benth. 1865
  • Lotononideae Hutch. 1964

Crotalarieae is a tribe of flowering plants belonging to the family Fabaceae. It includes rooibos (Aspalathus linearis), which is harvested for sale as a tisane.

Contents

Description

The Crotalarieae arose 31.2 ± 3.4 million years ago (in the Oligocene). [3] [4] The members of this tribe consistently form a monophyletic clade in molecular phylogenetic analyses. [3] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] The tribe does not currently have a node-based definition and no morphological synapomorphies have been identified. [5] [7] Several genera in the tribe produce quinolizidine alkaloids or macrocyclic pyrrolizidine alkaloids. [12] [17] [18]

Genera

Crotalarieae comprises the following genera: [19] [20] [21] [22]

Related Research Articles

<i>Camoensia</i> (plant) Genus of legumes

Camoensia is a genus of 2 species of lianas in the family Fabaceae, subfamily Faboideae, native to the Gulf of Guinea, Africa. C. scandens is cultivated as an ornamental plant; it has one of the largest leguminous flowers, up to 20 cm across. The genus has classically been assigned to the tribe Sophoreae, but was recently assigned to its own monophyletic tribe, Camoensieae, on the basis of molecular phylogenetic evidence. Species of Camoensia are known to produce quinolizidine alkaloids, consistent with their placement in the genistoid clade.

<span class="mw-page-title-main">Amorpheae</span> Tribe of legumes

The tribe Amorpheae is an early-branching clade within the flowering plant subfamily Faboideae or Papilionaceae. It is found from Mexico to Argentina. It was recently found to belong in a larger clade known informally as the dalbergioids sensu lato. This tribe is consistently resolved as monophyletic in molecular phylogenetic analyses. It is estimated to have arisen 36.9 ± 3.0 million years ago. A node-based definition for Amorpheae is: "the MRCA of Psorothamnus arborescens and Eysenhardtia orthocarpa." The tribe exhibits the following morphological synapomorphies: "epidermal glands throughout the plant body; dry, indehiscent fruits that are single-seeded; and terminal inflorescences."

<span class="mw-page-title-main">Brongniartieae</span> Tribe of legumes

The tribe Brongniartieae is one of the subdivisions of the plant family Fabaceae, primarily found in tropical regions of the Americas and in Australia The members of this tribe consistently form a monophyletic clade in molecular phylogenetic analyses. The tribe does not currently have a node-based definition, but morphological synapomorphies have been identified:

"stamens united by filaments in an adaxially open tube; anthers alternately long and basifixed, short and versatile; anther connective inconspicuous; septa present between seeds in pods; aril lateral lobe present and fitting into heel of funicle; fine red glandular processes present in axils; and pollen tricolporate with opercula and no definite endoaperture."

<span class="mw-page-title-main">Dalbergieae</span> Tribe of legumes

The tribe Dalbergieae is an early-branching clade within the flowering plant subfamily Faboideae. Within that subfamily, it belongs to an unranked clade called the dalbergioids. It was recently revised to include many genera formerly placed in tribes Adesmieae and Aeschynomeneae and to be included in a monophyletic group informally known as the dalbergioids sensu lato. The members of this tribe have a distinctive root nodule morphology, often referred to as an "aeschynomenoid" or "dalbergioid" nodule.

<span class="mw-page-title-main">Dipterygeae</span> Tribe of legumes

The tribe Dipterygeae is one of the subdivisions of the plant family Fabaceae. It was recently recircumscribed to include the following genera:

<span class="mw-page-title-main">Indigofereae</span> Tribe of legumes

The tribe Indigofereae is a subdivision of the plant family Fabaceae. It is consistently recovered as a monophyletic clade in molecular phylogenies. The Indigofereae arose 30.0 ± 3.3 million years ago.

<span class="mw-page-title-main">Podalyrieae</span> Tribe of legumes

The tribe Podalyrieae is one of the subdivisions of the plant family Fabaceae.

<span class="mw-page-title-main">Sophoreae</span> Tribe of legumes

The tribe Sophoreae is one of the subdivisions of the plant family Fabaceae. Traditionally this tribe has been used as a wastebasket taxon to accommodate genera of Faboideae which exhibit actinomorphic, rather than zygomorphic floral symmetry and/or incompletely differentiated petals and free stamens. Various morphological and molecular analyses indicated that Sophoreae as traditionally circumscribed was polyphyletic. This led to a re-circumscription of Sophoreae, which resulted in the transfer of many genera to other tribes. This also necessitated the inclusion of two former tribes, Euchresteae and Thermopsideae, in the new definition of Sophoreae. Tribe Sophoreae, as currently circumscribed, consistently forms a monophyletic clade in molecular phylogenetic analyses. The Sophoreae arose 40.8 ± 2.4 million years ago.

<span class="mw-page-title-main">Swartzieae</span> Clade of legumes

The tribe Swartzieae is an early-branching monophyletic clade of the flowering plant subfamily Faboideae or Papilionaceae. Traditionally this tribe has been used as a wastebasket taxon to accommodate genera of Faboideae which exhibit actinomorphic, rather than zygomorphic floral symmetry and/or incompletely differentiated petals and free stamens. It was recently revised and most of its genera were redistributed to other tribes. Under its new circumscription, this clade is consistently resolved in molecular phylogenies. Members of this tribe possess "non-papilionate swartzioid flowers[…]largely characterized by a tendency to lack petals combined with a profusion and elaboration of free stamens" and a "lack of unidirectional order in the initiation of the stamens". They also have "complete or near complete fusion of sepals resulting from intercalary growth early in development, relatively numerous stamens, and a single or no petal, with other petals not at all apparent in development." The tribe is predicted to have diverged from the other legume lineages 48.9±2.8 million years ago.

<span class="mw-page-title-main">Inverted repeat-lacking clade</span> Group of flowering plants

The inverted repeat-lacking clade (IRLC) is a monophyletic clade of the flowering plant subfamily Faboideae. Faboideae includes the majority of agriculturally-cultivated legumes. The name of this clade is informal and is not assumed to have any particular taxonomic rank like the names authorized by the ICBN or the ICPN. The clade is characterized by the loss of one of the two 25-kb inverted repeats in the plastid genome that are found in most land plants. It is consistently resolved in molecular phylogenies. The clade is predicted to have diverged from the other legume lineages 39.0±2.4 million years ago. It includes several large, temperate genera such as Astragalus, Hedysarum, Medicago, Oxytropis, Swainsona, and Trifolium.

<span class="mw-page-title-main">Amburaneae</span> Tribe of legumes

The tribe Amburaneae is one of the subdivisions of the plant family Fabaceae. It has been circumscribed to include the following genera, which used to be placed in tribes Sophoreae and Swartzieae:

<span class="mw-page-title-main">Angylocalyceae</span> Tribe of legumes

The tribe Angylocalyceae is one of the subdivisions of the plant family Fabaceae. It has been circumscribed to include the following genera, which had been placed in tribe Sophoreae:

<i>Cladrastis</i> clade Clade of legumes

The Cladrastis clade is a monophyletic clade of the flowering plant subfamily Faboideae that is found in eastern Asia and southern North America. It is consistently resolved in molecular phylogenies and is sister to the Meso-Papilionoideae. Evidence for the existence of this clade was first proposed based on morphological (floral), cytological, and biochemical evidence. It is predicted to have diverged from the other legume lineages 47.4±2.6 million years ago.

The Andira clade is a predominantly Neotropical, monophyletic clade of the flowering plant subfamily Faboideae. The members of this clade were formerly included in tribe Dalbergieae, but this placement was questioned due to differences in wood anatomy and fruit, seed, seedling, floral, and vegetative characters. Recent molecular phylogenetic evidence has shown that they belong to a unique evolutionary lineage. It is predicted to have diverged from the other legume lineages in the late Eocene).

The tribe Ormosieae is one of the subdivisions of the plant family Fabaceae, primarily found in tropical regions of the Americas, but also in southeast Asia and northern Australia. The members of this tribe were formerly included in tribe Sophoreae, but were recently circumscribed into a new tribe. The members of this tribe consistently form a monophyletic clade in molecular phylogenetic analyses. The tribe does not currently have a node-based definition, but morphological synapomorphies have been tentatively identified: "mostly dehiscent pods with woody valves" and "tufts of minute colleter-like glands in the axils of bract and bracteoles". Like other genistoids, members of tribe Ormosieae are known to produce quinolizidine alkaloids.

<span class="mw-page-title-main">Genistoids</span> Clade of legumes

The Genistoids are one of the major radiations in the plant family Fabaceae. Members of this phylogenetic clade are primarily found in the Southern hemisphere. Some genera are pollinated by birds. The genistoid clade is consistently resolved as monophyletic in molecular phylogenetic analyses. It is estimated to have arisen 56.4 ± 0.2 million years ago. A node-based definition for the genistoids is: "the MRCA of Poecilanthe parviflora and Lupinus argenteus." One morphological synapomorphy has been tentatively identified: production of quinolizidine alkaloids. Some genera also accumulate pyrrolizidine. A new genus, to be segregated from Clathrotropis, has also been proposed to occupy an undetermined position within the genistoid clade.

<span class="mw-page-title-main">Dalbergioids</span> Clade of legumes

The dalbergioids are an early-branching monophyletic clade of the flowering plant subfamily Faboideae or Papilionaceae. They are pantropical, particularly being found in the neotropics and sub-Saharan Africa. This clade is consistently resolved as monophyletic in molecular phylogenetic analyses. It is estimated to have arisen 55.3 ± 0.5 million years ago. A node-based definition for the dalbergioids is: "The least inclusive crown clade that contains Amorpha fruticosaL. 1753 and Dalbergia sissooRoxb. ex DC. 1825." Indehiscent pods may be a morphological synapomorphy for the clade.

<span class="mw-page-title-main">Genisteae</span> Tribe of legumes

Genisteae is a tribe of trees, shrubs and herbaceous plants in the subfamily Faboideae of the family Fabaceae. It includes a number of well-known plants including broom, lupine (lupin), gorse and laburnum.

<span class="mw-page-title-main">Baphieae</span> Tribe of legumes

The tribe Baphieae is one of the subdivisions of the plant family Fabaceae. The Baphieae tribe arose 55.3 ± 0.4 million years ago.

<span class="mw-page-title-main">Mirbelioids</span> Group of legumes

The Mirbelioids are an informal subdivision of the plant family Fabaceae that includes the former tribes Bossiaeeae and Mirbelieae. They are consistently recovered as a monophyletic clade in molecular phylogenies. The Mirbelioids arose 48.4 ± 1.3 million years ago. Members of this clade are mostly ericoid (sclerophyllous) shrubs with yellow and red flowers found in Australia, Tasmania, and Papua-New Guinea. The name of this clade is informal and is not assumed to have any particular taxonomic rank like the names authorized by the ICBN or the ICPN. Members of this clade exhibit unusual embryology compared to other legumes, either enlarged antipodal cells in the embryo sac or the production of multiple embryo sacs. There has been a shift from bee pollination to bird pollination several times in this clade. Mirbelioids produce quinolizidine alkaloids, but unlike most papilionoids, they do not produce isoflavones. Many of the Mirbelioids have pseudoraceme inflorescences.

References

  1. Wojciechowski MF (2013). "Towards a new classification of Leguminosae: Naming clades using non-Linnaean phylogenetic nomenclature". S Afr J Bot . 89: 85–93. doi: 10.1016/j.sajb.2013.06.017 .
  2. van Wyk B.-E. (2013). "Kew entry for Crotalarieae". www.kew.org. Royal Botanic Gardens, Kew, London, England. Retrieved 31 March 2014.[ permanent dead link ]
  3. 1 2 Boatwright JS; Savolainen V; Van Wyk B-E; Schutte-Vlok AL; Forest F; Van der Bank M (2008). "Systematic position of the anomalous genus Cadia and the phylogeny of the tribe Podalyrieae (Fabaceae)". Syst Bot . 33 (1): 133–147. doi:10.1600/036364408783887500. S2CID   53341490.
  4. Lavin M, Herendeen PS, Wojciechowski MF (2005). "Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary". Syst Biol . 54 (4): 575–94. doi: 10.1080/10635150590947131 . PMID   16085576.
  5. 1 2 Cardoso D, Pennington RT, de Queiroz LP, Boatwright JS, Van Wyk BE, Wojciechowski MF, Lavin M (2013). "Reconstructing the deep-branching relationships of the papilionoid legumes". S Afr J Bot . 89: 58–75. doi: 10.1016/j.sajb.2013.05.001 . hdl: 10566/3193 .
  6. Boatwright JS, le Roux MM, Wink M, Morozova T, van Wyk BE (2008). "Phylogenetic relationships of tribe Crotalarieae (Fabaceae) inferred from DNA sequences and morphology". Syst Bot . 33 (4): 752–761. doi:10.1600/036364408786500271. JSTOR   40211942. S2CID   85801868.
  7. 1 2 Cardoso D, de Queiroz LP, Pennington RT, de Lima HC, Fonty É, Wojciechowski MF, Lavin M (2012). "Revisiting the phylogeny of papilionoid legumes: new insights from comprehensively sampled early-branching lineages". Am J Bot . 99 (12): 1991–2013. doi:10.3732/ajb.1200380. PMID   23221500.
  8. Käss E, Wink M (1996). "Molecular evolution of the Leguminosae: Phylogeny of the three subfamilies based on rbcL-sequences". Biochem Syst Ecol . 24 (5): 365–378. Bibcode:1996BioSE..24..365K. doi:10.1016/0305-1978(96)00032-4.
  9. Käss E, Wink M (1997). "Phylogenetic Relationships in the Papilionoideae (Family Leguminosae) Based on Nucleotide Sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2)". Mol Phylogenet Evol . 8 (1): 65–88. Bibcode:1997MolPE...8...65K. doi:10.1006/mpev.1997.0410. PMID   9242596.
  10. Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997). "A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation". Am J Bot . 84 (4): 541–554. doi: 10.2307/2446030 . JSTOR   2446030. PMID   21708606.
  11. Doyle JJ, Chappill JA, Bailey CD, Kajita T (2000). "Towards a comprehensive phylogeny of legumes: evidence from rbcL sequences and non-molecular data". In Herendeen PS, Bruneau A (eds.). Advances in Legume Systematics, Part 9. Royal Botanic Gardens, Kew. pp. 1–20. ISBN   978-1842460177. Archived from the original on 2014-01-16. Retrieved 2014-03-03.
  12. 1 2 Wink M, Mohamed GI (2003). "Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene". Biochem Syst Ecol . 31 (8): 897–917. Bibcode:2003BioSE..31..897W. doi:10.1016/S0305-1978(03)00085-1.
  13. Wojciechowski MF, Lavin M, Sanderson MJ (2004). "A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family". Am J Bot . 91 (11): 1846–1862. doi: 10.3732/ajb.91.11.1846 . PMID   21652332.
  14. Crisp MD, Gilmore S, Van Wyk BE (2000). "Molecular phylogeny of the genistoid tribes of papilionoid legumes". In Herendeen PS, Bruneau A (eds.). Advances in Legume Systematics, Part 9. Royal Botanic Gardens, Kew. pp. 249–276. ISBN   978-1842460177. Archived from the original on 2014-01-16. Retrieved 2014-03-03.
  15. Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ (2001). "rbcL and legume phylogeny, with particular reference to Phaseoleae, Millettieae and allies". Syst Bot . 26 (3): 515–536. doi:10.1043/0363-6445-26.3.515 (inactive 1 November 2024). JSTOR   3093979.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  16. LPWG [Legume Phylogeny Working Group] (2013). "Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades" (PDF). Taxon . 62 (2): 217–248. doi:10.12705/622.8. hdl:10566/3455.
  17. Van Wyk B.E. (2003). "The value of chemosystematics in clarifying relationships in the Genistoid tribes of papilionoid legumes". Biochem Syst Ecol . 31 (8): 875–884. Bibcode:2003BioSE..31..875V. doi:10.1016/S0305-1978(03)00083-8.
  18. Van Wyk BE, Verdoorn GH (1990). "Alkaloids as taxonomic characters in the tribe Crotalarieae (Fabaceae)". Biochem Syst Ecol . 18 (7–8): 503–515. Bibcode:1990BioSE..18..503V. doi:10.1016/0305-1978(90)90122-V.
  19. Van Wyk BE, Schutte AL (1995). "Phylogenetic relationships of the tribes Podalyrieae, Liparieae and Crotalarieae". In Crisp MD, Doyle JJ (eds.). Advances in Legume Systematics, Part 7: Phylogeny. Royal Botanic Gardens, Kew. pp. 283–308. ISBN   978-0947643799. Archived from the original on 2014-01-17. Retrieved 2014-03-03.
  20. Boatwright JS, Wink M, van Wyk BE (2011). "The generic concept of Lotononis (Crotalarieae, Fabaceae): Reinstatement of the genera Euchlora, Leobordea and Listia and the new genus Ezoloba". Taxon . 60 (1): 161–77. doi:10.1002/tax.601014.
  21. Boatwright JS, Tilney PM, Van Wyk BE (2009). "The generic concept of Lebeckia (Crotalarieae, Fabaceae): reinstatement of the genus Calobota and the new genus Wiborgiella". S Afr J Bot . 75 (3): 546–556. doi: 10.1016/j.sajb.2009.06.001 .
  22. USDA; ARS; National Genetic Resources Program (2003). "GRIN genus records of Crotalarieae". Germplasm Resources Information Network—(GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Archived from the original on 24 September 2015. Retrieved 3 March 2014.