Cyclocarbon

Last updated

A cyclo[n]carbon is a chemical compound consisting solely of a number n of carbon atoms covalently linked in a ring. Since the compounds are composed only of carbon atoms, they are allotropes of carbon. Possible bonding patterns include all double bonds (a cyclic cumulene) or alternating single bonds and triple bonds (a cyclic polyyne). [1] [2] [3]

Contents

As of 2020, the only cyclocarbon that has been synthesized is cyclo[18]carbon.

Cyclo[6]carbon

The (hypothetical) six-carbon member of this family (C6) is also called benzotriyne.

Cyclo[18]carbon

The smallest cyclo[n]carbon predicted to be thermodynamically stable is C18, with a computed strain energy of 72 kilocalories per mole. [1] [3] An IBM/Oxford team claimed to synthesize its molecules in solid state in 2019: [4]

Synthesis of cyclocarbon Synthesis of cyclocarbon.png
Synthesis of cyclocarbon

According to these IBM researchers, the synthesized cyclocarbon has alternating triple and single bonds, rather than being made of entirely of double bonds. This supposedly makes this molecule a semiconductor. [5]

Large cyclo[n]carbons

Seenithurai & Chai 2020 found that larger cyclo[n]carbons [up to 100 carbon atoms] exhibit polyradical character and report linear carbon chains (l-CC[n]) as well as cyclic carbon chain or cyclo[n] carbon (c-CC[n]), where n=10-100. [6] For all the cases investigated, l-CC[n] and c-CC[n] are ground-state singlets, and c-CC[n] are energetically more stable than l-CC[n]. The electronic properties of l-CC[n] and c-CC[n] display peculiar oscillation patterns for smaller values of n, followed by monotonic changes for larger values of n. For the smaller carbon chains, odd-numbered l-CC[n] are more stable than the adjacent even-numbered ones, and c-CC[4m+2]/c-CC[4m] (where m are positive integers) are more/less stable than the adjacent odd-numbered ones. With the increase of n, l-CC[n] and c-CC[n] possess increasing polyradical nature in their ground states, with the active orbitals being delocalized over the entire length of l-CC[n] or the whole circumference of c-CC[n]. [6]

On the basis of TAO-LDA results, the smaller c-CC[n] (up to  = 22, where m are positive integers) possess nonradical nature and sizable singlet-triplet energy gaps (e.g., larger than 20 kcal/mol). In view of their high stability, it can be anticipated that these relatively stable cyclic carbon chains, such as c-CC[10], c-CC[14], c-CC[18], and c-CC[22], are likely to be synthesized in the near future. [6] Among them, c-CC[18] (i.e. cyclo[18]carbon) has been recently synthesized by an IBM/Oxford team in 2019. [4]

Related Research Articles

Alkene Hydrocarbon compound containing one or more carbon-carbon double bonds

In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond.

Carbon Chemical element, symbol C and atomic number 6

Carbon is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes up only about 0.025 percent of Earth's crust. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of about 5,730 years. Carbon is one of the few elements known since antiquity.

Fullerene Allotrope of carbon

A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ellipsoid, tube, or many other shapes and sizes. Graphene, which is a flat mesh of regular hexagonal rings, can be seen as an extreme member of the family.

Aromaticity Phenomenon providing chemical stability in resonating hybrids of cyclic organic compounds

In chemistry, aromaticity is a property of cyclic (ring-shaped), typically planar (flat) molecular structures with pi bonds in resonance that gives increased stability compared with other geometric or connective arrangements of the same set of atoms. Aromatic rings are very stable and do not break apart easily. Organic compounds that are not aromatic are classified as aliphatic compounds—they might be cyclic, but only aromatic rings have enhanced stability.

Allotropes of carbon Materials made only out of carbon

Carbon is capable of forming many allotropes due to its valency. Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene. Larger-scale structures of carbon include nanotubes, nanobuds and nanoribbons. Other unusual forms of carbon exist at very high temperatures or extreme pressures. Around 500 hypothetical 3‑periodic allotropes of carbon are known at the present time, according to the Samara Carbon Allotrope Database (SACADA).

In chemistry, catenation is the bonding of atoms of the same element into a series, called a chain. A chain or a ring shape may be open if its ends are not bonded to each other, or closed if they are bonded in a ring. The words to catenate and catenation reflect the Latin root catena, "chain".

Butene, also known as butylene, is an alkene with the formula C4H8. The word butene may refer to any of the individual compounds. They are colourless gases that are present in crude oil as a minor constituent in quantities that are too small for viable extraction. Butene is therefore obtained by catalytic cracking of long-chain hydrocarbons left during refining of crude oil. Cracking produces a mixture of products, and the butene is extracted from this by fractional distillation.

In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is R−:C−R' or R=C: where the R represents substituents or hydrogen atoms.

A non-Kekulé molecule is a conjugated hydrocarbon that cannot be assigned a classical Kekulé structure.

Silenes

Silene, or silalkenes, are unsaturated hydrosilicons, which means that they consist only of hydrogen and silicon atoms and all bond, with the exception of one double bond, are either single or double bonds. By definition cycles are excluded, so that the silenes comprise homologous series of inorganic compounds with the general formula Si
n
H
2n - 2k + 2
, k > 0, where k is defined as the number of double bonds. There are no commercial sources.

Polyyne

In chemistry, a polyyne is any organic compound with alternating single and triple bonds; that is, a series of consecutive alkynes, (−C≡C−)
n
with n greater than 1. These compounds are also called polyacetylenes, especially in the natural products and chemical ecology literature, even though this nomenclature more properly refers to acetylene polymers composed of alternating single and double bonds (−CR=CR′−). They are also sometimes referred to as oligoynes, or carbinoids after "carbyne" (−C≡C−)
, the hypothetical allotrope of carbon that would be the ultimate member of the series. The synthesis of this substance has been claimed several times since the 1960s, but those reports have been disputed. Indeed, the substances identified as short chains of "carbyne" in many early organic synthesis attempts would be called polyynes today.

Allotropes of sulfur Class of substances

The element sulfur exists as many allotropes. In number of allotropes, sulfur is second only to carbon. In addition to the allotropes, each allotrope often exists in polymorphs delineated by Greek prefixes.

Linear acetylenic carbon Allotrope of carbon

Linear acetylenic carbon (LAC), also known as carbyne or Linear Carbon Chain (LCC), is an allotrope of carbon that has the chemical structure (−C≡C−)n as a repeating chain, with alternating single and triple bonds. It would thus be the ultimate member of the polyyne family.

Oxocarbon

An oxocarbon or oxide of carbon is a chemical compound consisting only of carbon and oxygen. The simplest and most common oxocarbons are carbon monoxide (CO) and carbon dioxide (CO2). Many other stable (practically if not thermodynamically) or metastable oxides of carbon are known, but they are rarely encountered, such as carbon suboxide (C3O2 or O=C=C=C=O) and mellitic anhydride (C12O9).

Radical (chemistry) Atom, molecule, or ion that has an unpaired valence electron; typically highly reactive

In chemistry, a free radical is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

Benzotriyne Chemical compound

Benzotriyne or cyclo[6]carbon is a hypothetical chemical compound, an allotrope of carbon with molecular formula C6. The molecule is a ring of six carbon atoms, connected by alternating triple and single bonds. It is, therefore, a potential member of the cyclo[n]carbon family.

Decarbonylation is a type of organic reaction that involves loss of CO. It is often an undesirable reaction since it represents a degradation. In the chemistry of metal carbonyls, decarbonylation describes a substitution process, whereby a CO ligand is replaced by another ligand.

Tetranitrogen Chemical compound

Tetranitrogen is a neutrally charged polynitrogen allotrope of the chemical formula N
4
and consists of four nitrogen atoms. The tetranitrogen cation is the positively charged ion, N+
4
, which is more stable than the neutral tetranitrogen molecule and is thus more studied.

Graphyne Allotrope of carbon

Graphyne is an allotrope of carbon. Its structure is one-atom-thick planar sheets of sp and sp2-bonded carbon atoms arranged in crystal lattice. It can be seen as a lattice of benzene rings connected by acetylene bonds. Depending on the content of acetylene groups, graphyne can be considered a mixed hybridization, spn, where 1 < n < 2, and thus differs from the hybridization of graphene and diamond.

Cyclo(18)carbon Chemical compound

Cyclooctadeca-1,3,5,7,9,11,13,15,17-nonayne or cyclo[18]carbon is an allotrope of carbon with molecular formula C
18
. The molecule is a ring of eighteen carbon atoms, connected by alternating triple and single bonds; thus, it is a polyyne and a cyclocarbon.

References

  1. 1 2 George A. Adamson; Charles W. Rees (1996). "Towards the total synthesis of cyclo[n]carbons and the generation of cyclo[6]carbon". J. Chem. Soc., Perkin Trans. 1 (13): 1535–1543. doi:10.1039/P19960001535.
  2. Yves Rubin; Carolyn B. Knobler; Francois Diederich (1990). "Precursors to the cyclo[n]carbons: from 3,4-dialkynyl-3-cyclobutene-1,2-diones and 3,4-dialkynyl-3-cyclobutene-1,2-diols to cyclobutenodehydroannulenes and higher oxides of carbon". J. Am. Chem. Soc. 112 (4): 1607–1617. doi:10.1021/ja00160a047.
  3. 1 2 François Diederich; Yves Rubin; Carolyn B. Knobler; Robert L. Whetten; Kenneth E. Schriver; Kendall N. Houk; Yi Li (8 September 1989). "All-Carbon Molecules: Evidence for the Generation of Cyclo[18]carbon from a Stable Organic Precursor". Science. 245 (4922): 1088–1090. Bibcode:1989Sci...245.1088D. doi:10.1126/science.245.4922.1088. PMID   17838807. S2CID   23726682.
  4. 1 2 Kaiser, Katharina (15 Aug 2019). "An sp-hybridized molecular carbon allotrope, cyclo[18]carbon". Science. 365 (6459): 1299–1301. arXiv: 1908.05904 . Bibcode:2019Sci...365.1299K. doi:10.1126/science.aay1914. PMID   31416933. S2CID   201019470.
  5. Castelvecchi, Davide (15 August 2019). "Chemists make first-ever ring of pure carbon". Nature. 572 (7770): 426. Bibcode:2019Natur.572..426C. doi: 10.1038/d41586-019-02473-z . PMID   31431741.
  6. 1 2 3 Seenithurai, Sonai; Chai, Jeng-Da (4 August 2020). "TAO-DFT investigation of electronic properties of linear and cyclic carbon chains". Scientific Reports. 10 (1): 13133. Bibcode:2020NatSR..1013133S. doi: 10.1038/s41598-020-70023-z . PMC   7403413 . PMID   32753715.