Cyclooctanone

Last updated
Cyclooctanone
Cyclooctanone Structural Formula V1.svg
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.007.219 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 207-940-2
PubChem CID
UNII
  • InChI=1S/C8H14O/c9-8-6-4-2-1-3-5-7-8/h1-7H2
    Key: IIRFCWANHMSDCG-UHFFFAOYSA-N
  • C1CCCC(=O)CCC1
Properties
C8H14O
Molar mass 126.199 g·mol−1
Appearancecolorless solid
Density 0.956 g/cm3
Melting point 29 °C (84 °F; 302 K)
Boiling point 86 12 torr
0.959
Hazards
GHS labelling: [1]
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H315, H319, H335
P260, P261, P264, P264+P265, P271, P280, P301+P330+P331, P302+P352, P302+P361+P354, P304+P340, P305+P351+P338, P305+P354+P338, P316, P319, P321, P332+P317, P337+P317, P362+P364, P363, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyclooctanone is an organic compound with the formula (CH2)7CO. It is a waxy white solid.

Contents

Synthesis and reactions

It can be prepared by

Among its many reactions, Baeyer-Villiger oxidation gives the nine-membered cyclic ester. [4]

See also

Related Research Articles

The following outline is provided as an overview of and topical guide to organic chemistry:

<span class="mw-page-title-main">Acetone peroxide</span> Chemical compound

Acetone peroxide is an organic peroxide and a primary explosive. It is produced by the reaction of acetone and hydrogen peroxide to yield a mixture of linear monomer and cyclic dimer, trimer, and tetramer forms. The monomer is dimethyldioxirane. The dimer is known as diacetone diperoxide (DADP). The trimer is known as triacetone triperoxide (TATP) or tri-cyclic acetone peroxide (TCAP). Acetone peroxide takes the form of a white crystalline powder with a distinctive bleach-like odor or a fruit-like smell when pure, and can explode powerfully if subjected to heat, friction, static electricity, concentrated sulfuric acid, strong UV radiation, or shock. Until about 2015, explosives detectors were not set to detect non-nitrogenous explosives, as most explosives used preceding 2015 were nitrogen-based. TATP, being nitrogen-free, has been used as the explosive of choice in several terrorist bomb attacks since 2001.

<span class="mw-page-title-main">Hydrogen peroxide–urea</span> Chemical compound

Hydrogen peroxide–urea is a white crystalline solid chemical compound composed of equal amounts of hydrogen peroxide and urea. It contains solid and water-free hydrogen peroxide, which offers a higher stability and better controllability than liquid hydrogen peroxide when used as an oxidizing agent. Often called carbamide peroxide in dentistry, it is used as a source of hydrogen peroxide when dissolved in water for bleaching, disinfection and oxidation.

<span class="mw-page-title-main">Dess–Martin periodinane</span> Chemical reagent

Dess–Martin periodinane (DMP) is a chemical reagent used in the Dess–Martin oxidation, oxidizing primary alcohols to aldehydes and secondary alcohols to ketones. This periodinane has several advantages over chromium- and DMSO-based oxidants that include milder conditions, shorter reaction times, higher yields, simplified workups, high chemoselectivity, tolerance of sensitive functional groups, and a long shelf life. However, use on an industrial scale is made difficult by its cost and its potentially explosive nature. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the reagent in 1983. It is based on IBX, but due to the acetate groups attached to the central iodine atom, DMP is much more reactive than IBX and is much more soluble in organic solvents.

The Criegee rearrangement is a rearrangement reaction named after Rudolf Criegee.

The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899.

<span class="mw-page-title-main">Aflatoxin total synthesis</span> Total synthesis of the group of organic compounds

Aflatoxin total synthesis concerns the total synthesis of a group of organic compounds called aflatoxins. These compounds occur naturally in several fungi. As with other chemical compound targets in organic chemistry, the organic synthesis of aflatoxins serves various purposes. Traditionally it served to prove the structure of a complex biocompound in addition to evidence obtained from spectroscopy. It also demonstrates new concepts in organic chemistry and opens the way to molecular derivatives not found in nature. And for practical purposes, a synthetic biocompound is a commercial alternative to isolating the compound from natural resources. Aflatoxins in particular add another dimension because it is suspected that they have been mass-produced in the past from biological sources as part of a biological weapons program.

<span class="mw-page-title-main">2-Iodoxybenzoic acid</span> Chemical compound

2-Iodoxybenzoic acid (IBX) is an organic compound used in organic synthesis as an oxidizing agent. This periodinane is especially suited to oxidize alcohols to aldehydes. IBX is most often prepared from 2-iodobenzoic acid and a strong oxidant such as potassium bromate and sulfuric acid, or more commonly, oxone. One of the main drawbacks of IBX is its limited solubility; IBX is insoluble in many common organic solvents. IBX is an impact- and heat-sensitive explosive (>200°C). Commercial IBX is stabilized by carboxylic acids such as benzoic acid and isophthalic acid.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

<span class="mw-page-title-main">Shi epoxidation</span>

The Shi epoxidation is a chemical reaction described as the asymmetric epoxidation of alkenes with oxone and a fructose-derived catalyst (1). This reaction is thought to proceed via a dioxirane intermediate, generated from the catalyst ketone by oxone. The addition of the sulfate group by the oxone facilitates the formation of the dioxirane by acting as a good leaving group during ring closure. It is notable for its use of a non-metal catalyst and represents an early example of organocatalysis.

<span class="mw-page-title-main">Quinuclidone</span>

Quinuclidones are a class of bicyclic organic compounds with chemical formula C7H11NO with two structural isomers for the base skeleton 3-quinuclidone and 2-quinuclidone.

<span class="mw-page-title-main">Sarett oxidation</span> Organic reaction

The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine. Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. Use of the original Sarett oxidation has become largely antiquated however, in favor of other modified oxidation techniques. The unadulterated reaction is still occasionally used in teaching settings and in small scale laboratory research.

<span class="mw-page-title-main">Schmidt reaction</span> Chemical reaction between an azide and a carbonyl derivative

In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen. It is named after Karl Friedrich Schmidt (1887–1971), who first reported it in 1924 by successfully converting benzophenone and hydrazoic acid to benzanilide. The intramolecular reaction was not reported until 1991 but has become important in the synthesis of natural products. The reaction is effective with carboxylic acids to give amines (above), and with ketones to give amides (below).

William D. Emmons was an American chemist and published with William S. Wadsworth a modification to the Wittig-Horner reaction using phosphonate-stabilized carbanions, now called the Horner-Wadsworth-Emmons reaction or HWE reaction or Horner-Wittig reaction.

<span class="mw-page-title-main">Dess–Martin oxidation</span>

The Dess–Martin oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes and secondary alcohols to ketones using Dess–Martin periodinane. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the periodinane reagent in 1983.

<span class="mw-page-title-main">Seleninic acid</span> Class of chemical compounds

A seleninic acid is an organoselenium compound and an oxoacid with the general formula RSeO2H, where R ≠ H. Its structure is R−Se(=O)−OH. It is a member of the family of organoselenium oxoacids, which also includes selenenic acids and selenonic acids, which are R−Se−OH and R−Se(=O)2−OH, respectively. The parent member of this family of compounds is methaneseleninic acid, also known as methylseleninic acid or "MSA".

<span class="mw-page-title-main">Alkenyl peroxides</span> Organic compounds of the form R2C=C(R)OOR

In organic chemistry, alkenyl peroxides are organic peroxides bearing an alkene residue directly at the peroxide group, resulting in the general formula R2C=C(R)OOR. They have very weak O-O bonds and are thus generally unstable compounds.

<span class="mw-page-title-main">Trifluoroperacetic acid</span> Chemical compound

Trifluoroperacetic acid is an organofluorine compound, the peroxy acid analog of trifluoroacetic acid, with the condensed structural formula CF
3
COOOH
. It is a strong oxidizing agent for organic oxidation reactions, such as in Baeyer–Villiger oxidations of ketones. It is the most reactive of the organic peroxy acids, allowing it to successfully oxidise relatively unreactive alkenes to epoxides where other peroxy acids are ineffective. It can also oxidise the chalcogens in some functional groups, such as by transforming selenoethers to selones. It is a potentially explosive material and is not commercially available, but it can be quickly prepared as needed. Its use as a laboratory reagent was pioneered and developed by William D. Emmons.

<span class="mw-page-title-main">Peroxymonophosphoric acid</span> Oxyacid of phosphorus

Peroxymonophosphoric acid is an oxyacid of phosphorus. It is a colorless viscous oil. Its salts are called peroxymonophosphates. Another peroxyphosphoric acid is peroxydiphosphoric acid, H4P2O8.

References

  1. "Cyclooctanone". pubchem.ncbi.nlm.nih.gov.
  2. Dess, Daniel B.; Martin, J. C. (1991). "A useful 12-I-5 triacetoxyperiodinane (The Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species". Journal of the American Chemical Society. 113 (19): 7277–7287. doi:10.1021/ja00019a027.
  3. E. J. Eisenbraun (1965). "Cycloöctanone". Organic Syntheses. 45: 28. doi:10.15227/orgsyn.045.0028.
  4. Krow, Grant R. (1993). "TheBaeyer–VilligerOxidation of Ketones and Aldehydes". Organic Reactions. pp. 251–798. doi:10.1002/0471264180.or043.03. ISBN   978-0-471-26418-7.