DNMT1

Last updated
DNMT1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DNMT1 , ADCADN, AIM, CXXC9, DNMT, HSN1E, MCMT, m.HsaI, DNA (cytosine-5-)-methyltransferase 1, DNA methyltransferase 1
External IDs OMIM: 126375 MGI: 94912 HomoloGene: 124071 GeneCards: DNMT1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001130823
NM_001379
NM_001318730
NM_001318731

NM_001199431
NM_001199432
NM_001199433
NM_010066
NM_001314011

Contents

RefSeq (protein)

NP_001124295
NP_001305659
NP_001305660
NP_001370

Location (UCSC) Chr 19: 10.13 – 10.23 Mb Chr 9: 20.82 – 20.87 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

DNA (cytosine-5)-methyltransferase 1(Dnmt1) is an enzyme that catalyzes the transfer of methyl groups to specific CpG sites in DNA, a process called DNA methylation. In humans, it is encoded by the DNMT1 gene. [5] Dnmt1 forms part of the family of DNA methyltransferase enzymes, which consists primarily of DNMT1, DNMT3A, and DNMT3B.

Function

This enzyme is responsible for maintaining DNA methylation, which ensures the fidelity of this epigenetic patterns across cell divisions. In line with this role, it has a strong preference towards methylating CpGs on hemimethylated DNA. [6] However, DNMT1 can catalyze de novo DNA methylation in specific genomic contexts, including transposable elements and paternal imprint control regions. [7] [8] Aberrant methylation patterns are associated with certain human tumors and developmental abnormalities. [9] [10]

See also

Interactions

DNMT1 has been shown to interact with UHRF1,:

DNMT1 is highly transcribed during the S phase of the cell cycle when it is required for methylation of the newly generated hemimethylated sites on daughter DNA strands. [18] Its interaction with PCNA and UHRF1 has been implicated in localizing it to the replication fork. [19] The direct co-operation between DNMT1 and G9a coordinates DNA and H3K9 methylation during cell division. [17] This chromatin methylation is necessary for stable repression of gene expression during mammalian development.

Model organisms

Knockout experiments have shown that this enzyme is responsible for the bulk of methylation in mouse cells, and it is essential for embryonic development. [20] It has also been shown that a lack of both maternal and zygotic Dnmt1 results in complete demethylation of imprinted genes in blastocysts. [21]

Clinical significance

DNMT1 plays a critical role in Hematopoietic stem cell (HSC) maintenance. HSCs with reduced DNMT1 fail to self-renew efficiently post-transplantation. [22] It has also been shown to be critical for other stem cell types such as Intestinal stem cells (ISCs) and Mammary stem cells (MaSCs). Conditional deletion of DNMT1 results in overall intestinal hypomethylation, crypt expansion and altered differentiation timing of ISCs, and proliferation and maintenance of MaSCs. [23]

Related Research Articles

<span class="mw-page-title-main">Epigenetics</span> Study of DNA modifications that do not change its sequence

In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic mechanism of inheritance. Epigenetics usually involves a change that is not erased by cell division, and affects the regulation of gene expression. Such effects on cellular and physiological phenotypic traits may result from environmental factors, or be part of normal development. They can lead to cancer.

Methylation, in the chemical sciences, is the addition of a methyl group on a substrate, or the substitution of an atom by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These terms are commonly used in chemistry, biochemistry, soil science, and biology.

<span class="mw-page-title-main">5-Methylcytosine</span> Chemical compound which is a modified DNA base

5-Methylcytosine is a methylated form of the DNA base cytosine (C) that regulates gene transcription and takes several other biological roles. When cytosine is methylated, the DNA maintains the same sequence, but the expression of methylated genes can be altered. 5-Methylcytosine is incorporated in the nucleoside 5-methylcytidine.

<span class="mw-page-title-main">Transcription (biology)</span> Process of copying a segment of DNA into RNA

Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins produce messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs).

<span class="mw-page-title-main">CpG site</span> Region of often-methylated DNA with a cytosine followed by a guanine

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG islands.

<span class="mw-page-title-main">DNA methyltransferase</span> Class of enzymes

In biochemistry, the DNA methyltransferase family of enzymes catalyze the transfer of a methyl group to DNA. DNA methylation serves a wide variety of biological functions. All the known DNA methyltransferases use S-adenosyl methionine (SAM) as the methyl donor.

In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is transcribed. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Some examples of this include producing the mRNA that encode enzymes to adapt to a change in a food source, producing the gene products involved in cell cycle specific activities, and producing the gene products responsible for cellular differentiation in multicellular eukaryotes, as studied in evolutionary developmental biology.

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

<span class="mw-page-title-main">DNA methylation</span> Biological process

DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis.

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

<span class="mw-page-title-main">Proliferating cell nuclear antigen</span> Mammalian protein found in Homo sapiens

Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, where it acts as a scaffold to recruit proteins involved in DNA replication, DNA repair, chromatin remodeling and epigenetics.

<span class="mw-page-title-main">DNA adenine methylase</span> Prokaryotic enzyme

DNA adenine methylase, (Dam) (also site-specific DNA-methyltransferase (adenine-specific), EC 2.1.1.72, modification methylase, restriction-modification system) is an enzyme that adds a methyl group to the adenine of the sequence 5'-GATC-3' in newly synthesized DNA. Immediately after DNA synthesis, the daughter strand remains unmethylated for a short time. It is an orphan methyltransferase that is not part of a restriction-modification system and regulates gene expression. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">DNMT3B</span> Protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3 beta, is an enzyme that in humans in encoded by the DNMT3B gene. Mutation in this gene are associated with immunodeficiency, centromere instability and facial anomalies syndrome.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">DNA (cytosine-5)-methyltransferase 3A</span> Protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3A (DNMT3A) is an enzyme that catalyzes the transfer of methyl groups to specific CpG structures in DNA, a process called DNA methylation. The enzyme is encoded in humans by the DNMT3A gene.

<span class="mw-page-title-main">DMAP1</span> Protein-coding gene in the species Homo sapiens

DNA methyltransferase 1-associated protein 1 is an enzyme that in humans is encoded by the DMAP1 gene.

<span class="mw-page-title-main">DNA demethylation</span> Removal of a methyl group from one or more nucleotides within a DNA molecule.

For molecular biology in mammals, DNA demethylation causes replacement of 5-methylcytosine (5mC) in a DNA sequence by cytosine (C). DNA demethylation can occur by an active process at the site of a 5mC in a DNA sequence or, in replicating cells, by preventing addition of methyl groups to DNA so that the replicated DNA will largely have cytosine in the DNA sequence.

Methylated DNA immunoprecipitation is a large-scale purification technique in molecular biology that is used to enrich for methylated DNA sequences. It consists of isolating methylated DNA fragments via an antibody raised against 5-methylcytosine (5mC). This technique was first described by Weber M. et al. in 2005 and has helped pave the way for viable methylome-level assessment efforts, as the purified fraction of methylated DNA can be input to high-throughput DNA detection methods such as high-resolution DNA microarrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). Nonetheless, understanding of the methylome remains rudimentary; its study is complicated by the fact that, like other epigenetic properties, patterns vary from cell-type to cell-type.

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

Embryonic stem cells are capable of self-renewing and differentiating to the desired fate depending on their position in the body. Stem cell homeostasis is maintained through epigenetic mechanisms that are highly dynamic in regulating the chromatin structure as well as specific gene transcription programs. Epigenetics has been used to refer to changes in gene expression, which are heritable through modifications not affecting the DNA sequence.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000130816 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000004099 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Yen RW, Vertino PM, Nelkin BD, Yu JJ, el-Deiry W, Cumaraswamy A, Lennon GG, Trask BJ, Celano P, Baylin SB (May 1992). "Isolation and characterization of the cDNA encoding human DNA methyltransferase". Nucleic Acids Research. 20 (9): 2287–91. doi:10.1093/nar/20.9.2287. PMC   312343 . PMID   1594447.
  6. Hermann A, Goyal R, Jeltsch A (November 2004). "The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites". The Journal of Biological Chemistry. 279 (46): 48350–9. doi: 10.1074/jbc.M403427200 . PMID   15339928.
  7. Yarychkivska O, Shahabuddin Z, Comfort N, Boulard M, Bestor TH (December 2018). "BAH domains and a histone-like motif in DNA methyltransferase 1 (DNMT1) regulate de novo and maintenance methylation in vivo". The Journal of Biological Chemistry. 293 (50): 19466–19475. doi: 10.1074/jbc.RA118.004612 . PMC   6302165 . PMID   30341171.
  8. Haggerty C, Kretzmer H, Riemenschneider C, et al. (June 2021). "Dnmt1 has de novo activity targeted to transposable elements". Nature Structural and Molecular Biology. 28 (7): 594–603. doi: 10.1038/s41594-021-00603-8 . PMC   8279952 . PMID   34140676.
  9. Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S, B Dyck PJ, Parisi JE, Mer G, Smith DI, Dyck PJ (June 2011). "Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss". Nature Genetics. 43 (6): 595–600. doi:10.1038/ng.830. PMC   3102765 . PMID   21532572.
  10. "Entrez Gene: DNMT1 DNA (cytosine-5-)-methyltransferase 1".
  11. 1 2 3 Rountree MR, Bachman KE, Baylin SB (July 2000). "DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci". Nature Genetics. 25 (3): 269–77. doi:10.1038/77023. PMID   10888872. S2CID   26149386.
  12. 1 2 Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (August 2002). "Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases". The EMBO Journal. 21 (15): 4183–95. doi:10.1093/emboj/cdf401. PMC   126147 . PMID   12145218.
  13. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (July 2003). "Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin". Current Biology. 13 (14): 1192–200. Bibcode:2003CBio...13.1192L. doi: 10.1016/s0960-9822(03)00432-9 . PMID   12867029.
  14. Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T (October 2002). "PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA". Genes to Cells. 7 (10): 997–1007. doi: 10.1046/j.1365-2443.2002.00584.x . PMID   12354094. S2CID   25310911.
  15. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (September 1997). "Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1". Science. 277 (5334): 1996–2000. doi:10.1126/science.277.5334.1996. PMID   9302295.
  16. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (July 2000). "DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters". Nature Genetics. 25 (3): 338–42. doi:10.1038/77124. PMID   10888886. S2CID   10983932.
  17. 1 2 Estève PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, Carey MF, Pradhan S (November 2006). "Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication". Genes & Development. 20 (22): 3089–103. doi:10.1101/gad.1463706. PMC   1635145 . PMID   17085482.
  18. Robertson KD, Keyomarsi K, Gonzales FA, Velicescu M, Jones PA (May 2000). "Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells". Nucleic Acids Research. 28 (10): 2108–13. doi:10.1093/nar/28.10.2108. PMC   105379 . PMID   10773079.
  19. Jones PA, Liang G (November 2009). "Rethinking how DNA methylation patterns are maintained". Nature Reviews. Genetics. 10 (11): 805–11. doi:10.1038/nrg2651. PMC   2848124 . PMID   19789556.
  20. Li E, Bestor TH, Jaenisch R (June 1992). "Targeted mutation of the DNA methyltransferase gene results in embryonic lethality". Cell. 69 (6): 915–26. doi:10.1016/0092-8674(92)90611-F. PMID   1606615. S2CID   19879601.
  21. Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H (June 2008). "Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development". Genes & Development. 22 (12): 1607–16. doi:10.1101/gad.1667008. PMC   2428059 . PMID   18559477.
  22. Trowbridge JJ, Snow JW, Kim J, Orkin SH (October 2009). "DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells". Cell Stem Cell. 5 (4): 442–9. doi:10.1016/j.stem.2009.08.016. PMC   2767228 . PMID   19796624.
  23. Avgustinova A, Benitah SA (October 2016). "Epigenetic control of adult stem cell function". Nature Reviews. Molecular Cell Biology. 17 (10): 643–58. doi:10.1038/nrm.2016.76. PMID   27405257. S2CID   24795361.

Further reading