EHMT2

Last updated

EHMT2
Protein EHMT2 PDB 2o8j.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases EHMT2 , BAT8, C6orf30, G9A, GAT8, KMT1C, NG36, euchromatic histone lysine methyltransferase 2
External IDs OMIM: 604599 MGI: 2148922 HomoloGene: 48460 GeneCards: EHMT2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001286573
NM_001286575
NM_145830
NM_147151

RefSeq (protein)

NP_001276342
NP_001305762
NP_006700
NP_079532
NP_001350618

Location (UCSC) Chr 6: 31.88 – 31.9 Mb Chr 17: 35.12 – 35.13 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Euchromatic histone-lysine N-methyltransferase 2 (EHMT2), also known as G9a, is a histone methyltransferase enzyme that in humans is encoded by the EHMT2 gene. [5] [6] [7] G9a catalyzes the mono- and di-methylated states of histone H3 at lysine residue 9 (i.e., H3K9me1 and H3K9me2) and lysine residue 27 (H3K27me1 and HeK27me2). [8] [9]

Function

A cluster of genes, BAT1-BAT5, has been localized in the vicinity of the genes for TNF alpha and TNF beta. This gene is found near this cluster; it was mapped near the gene for C2 within a 120-kb region that included a HSP70 gene pair. These genes are all within the human major histocompatibility complex class III region. This gene was thought to be two different genes, NG36 and G9a, adjacent to each other but a recent publication shows that there is only a single gene. The protein encoded by this gene is thought to be involved in intracellular protein-protein interaction. There are three alternatively spliced transcript variants of this gene but only two are fully described. [7]

G9a and G9a-like protein, another histone-lysine N-methyltransferase, catalyze the synthesis of H3K9me2, which is a repressive mark. [8] [9] [10] G9a is an important control mechanism for epigenetic regulation within the nucleus accumbens (NAcc); [11] reduced G9a expression in the NAcc plays a central role in mediating the development of an addiction. [11] G9a opposes increases in ΔFosB expression via H3K9me2 and is suppressed by ΔFosB. [11] [12] G9a exerts opposite effects to that of ΔFosB on drug-related behavior (e.g., self-administration) and synaptic remodeling (e.g., dendritic arborization – the development of additional tree-like dendritic branches and spines) in the nucleus accumbens, and therefore opposes ΔFosB's function as well as increases in its expression. [11] G9a and ΔFosB share many of the same gene targets. [13] In addition to its role in the nucleus accumbens, G9a play a critical role in the development and the maintenance of neuropathic pain. [14] [15] Following peripheral nerve injury, G9a regulates the expression of +600 genes in the dorsal root ganglia. This transcriptomic change reprograms the sensory neurons to a hyperexcitable state leading to mechanical pain hypersensitivity. [14]

Interactions

EHMT2 has been shown to interact with KIAA0515 and the prostate tissue associated homeodomain protein NKX3.1. [16] [17]

Related Research Articles

<span class="mw-page-title-main">Histone</span> Family proteins package and order the DNA into structural units called nucleosomes.

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Epigenetics</span> Study of DNA modifications that do not change its sequence

In biology, epigenetics is the study of stable phenotypic changes that do not involve alterations in the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic basis for inheritance. Epigenetics most often involves changes that affect the regulation of gene expression, but the term can also be used to describe any heritable phenotypic change. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors, or be part of normal development. It can also lead to diseases such as cancer.

<span class="mw-page-title-main">Histone methyltransferase</span> Histone-modifying enzymes

Histone methyltransferases (HMT) are histone-modifying enzymes, that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of histone proteins. The attachment of methyl groups occurs predominantly at specific lysine or arginine residues on histones H3 and H4. Two major types of histone methyltranferases exist, lysine-specific and arginine-specific. In both types of histone methyltransferases, S-Adenosyl methionine (SAM) serves as a cofactor and methyl donor group.
The genomic DNA of eukaryotes associates with histones to form chromatin. The level of chromatin compaction depends heavily on histone methylation and other post-translational modifications of histones. Histone methylation is a principal epigenetic modification of chromatin that determines gene expression, genomic stability, stem cell maturation, cell lineage development, genetic imprinting, DNA methylation, and cell mitosis.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">SUV39H1</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase SUV39H1 is an enzyme that in humans is encoded by the SUV39H1 gene.

<span class="mw-page-title-main">KMT2A</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase 2A also known as acute lymphoblastic leukemia 1 (ALL-1), myeloid/lymphoid or mixed-lineage leukemia1 (MLL1), or zinc finger protein HRX (HRX) is an enzyme that in humans is encoded by the KMT2A gene.

<span class="mw-page-title-main">SETDB1</span> Enzyme-coding gene in humans

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene. SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.

<span class="mw-page-title-main">DNMT3L</span> Protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3-like is an enzyme that in humans is encoded by the DNMT3L gene.

<span class="mw-page-title-main">SETD7</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase SETD7 is an enzyme that in humans is encoded by the SETD7 gene.

<span class="mw-page-title-main">KMT2D</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and sometimes MLL2 in humans and Mll4 in mice, is a major mammalian histone H3 lysine 4 (H3K4) mono-methyltransferase. It is part of a family of six Set1-like H3K4 methyltransferases that also contains KMT2A, KMT2B, KMT2C, KMT2F, and KMT2G.

<span class="mw-page-title-main">PRDM9</span> Protein-coding gene in humans

PR domain zinc finger protein 9 is a protein that in humans is encoded by the PRDM9 gene. PRDM9 is responsible for positioning recombination hotspots during meiosis by binding a DNA sequence motif encoded in its zinc finger domain. PRDM9 is the only speciation gene found so far in mammals, and is one of the fastest evolving genes in the genome.

<span class="mw-page-title-main">EHMT1</span> Protein-coding gene in the species Homo sapiens

Euchromatic histone-lysine N-methyltransferase 1, also known as G9a-like protein (GLP), is a protein that in humans is encoded by the EHMT1 gene.

H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addition of three methyl groups (trimethylation) to the lysine 4 on the histone H3 protein.

<span class="mw-page-title-main">Thomas Jenuwein</span> German scientist

Thomas Jenuwein is a German scientist working in the fields of epigenetics, chromatin biology, gene regulation and genome function.

H3K9me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation at the 9th lysine residue of the histone H3 protein and is often associated with heterochromatin.

H3K9me2 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the di-methylation at the 9th lysine residue of the histone H3 protein. H3K9me2 is strongly associated with transcriptional repression. H3K9me2 levels are higher at silent compared to active genes in a 10kb region surrounding the transcriptional start site. H3K9me2 represses gene expression both passively, by prohibiting acetylation as therefore binding of RNA polymerase or its regulatory factors, and actively, by recruiting transcriptional repressors. H3K9me2 has also been found in megabase blocks, termed Large Organised Chromatin K9 domains (LOCKS), which are primarily located within gene-sparse regions but also encompass genic and intergenic intervals. Its synthesis is catalyzed by G9a, G9a-like protein, and PRDM2. H3K9me2 can be removed by a wide range of histone lysine demethylases (KDMs) including KDM1, KDM3, KDM4 and KDM7 family members. H3K9me2 is important for various biological processes including cell lineage commitment, the reprogramming of somatic cells to induced pluripotent stem cells, regulation of the inflammatory response, and addiction to drug use.

H3K36me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation at the 36th lysine residue of the histone H3 protein and often associated with gene bodies.

H4K20me is an epigenetic modification to the DNA packaging protein Histone H4. It is a mark that indicates the mono-methylation at the 20th lysine residue of the histone H4 protein. This mark can be di- and tri-methylated. It is critical for genome integrity including DNA damage repair, DNA replication and chromatin compaction.

H3K36me is an epigenetic modification to the DNA packaging protein Histone H3, specifically, the mono-methylation at the 36th lysine residue of the histone H3 protein.

References

  1. 1 2 3 ENSG00000224143, ENSG00000206376, ENSG00000204371, ENSG00000227333, ENSG00000232045, ENSG00000236759 GRCh38: Ensembl release 89: ENSG00000238134, ENSG00000224143, ENSG00000206376, ENSG00000204371, ENSG00000227333, ENSG00000232045, ENSG00000236759 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000013787 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Milner CM, Campbell RD (March 1993). "The G9a gene in the human major histocompatibility complex encodes a novel protein containing ankyrin-like repeats". The Biochemical Journal. 290 (Pt 3): 811–8. doi:10.1042/bj2900811. PMC   1132354 . PMID   8457211.
  6. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y (July 2001). "Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3". The Journal of Biological Chemistry. 276 (27): 25309–17. doi: 10.1074/jbc.M101914200 . PMID   11316813.
  7. 1 2 "Entrez Gene: EHMT2 euchromatic histone-lysine N-methyltransferase 2".
  8. 1 2 Nestler EJ (August 2015). Role of the Brain's Reward Circuitry in Depression: Transcriptional Mechanisms. International Review of Neurobiology. Vol. 124. pp. 151–70. doi:10.1016/bs.irn.2015.07.003. ISBN   9780128015834. PMC   4690450 . PMID   26472529.
  9. 1 2 "Histone-lysine N-methyltransferase, H3 lysine-9 specific 3". HIstome: The Histone Infobase. Retrieved 8 June 2018.
  10. "Histone-lysine N-methyltransferase, H3 lysine-9 specific 5". HIstome: The Histone Infobase. Retrieved 8 June 2018.
  11. 1 2 3 4 Nestler EJ (January 2014). "Epigenetic mechanisms of drug addiction". Neuropharmacology. 76 (Pt B): 259–68. doi:10.1016/j.neuropharm.2013.04.004. PMC   3766384 . PMID   23643695.
  12. Whalley K (December 2014). "Psychiatric disorders: a feat of epigenetic engineering". Nature Reviews. Neuroscience. 15 (12): 768–9. doi: 10.1038/nrn3869 . PMID   25409693. S2CID   11513288.
  13. Robison AJ, Nestler EJ (October 2011). "Transcriptional and epigenetic mechanisms of addiction". Nature Reviews. Neuroscience. 12 (11): 623–37. doi:10.1038/nrn3111. PMC   3272277 . PMID   21989194.
    Figure 4: Epigenetic basis of drug regulation of gene expression
  14. 1 2 Laumet, Geoffroy (2015). "G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain transition". Nature Neuroscience. 18 (12): 1746–1755. doi:10.1038/nn.4165. PMC   4661086 . PMID   26551542.
  15. Liang, Lingli (2016). "G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons". Scientific Reports. 6: 37704. Bibcode:2016NatSR...637704L. doi:10.1038/srep37704. PMC   5118693 . PMID   27874088.
  16. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  17. Dutta A, et al. (June 2016). "Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation". Science. 352 (6293): 1576–80. Bibcode:2016Sci...352.1576D. doi:10.1126/science.aad9512. PMC   5507586 . PMID   27339988.

Further reading