Dark septate endophyte

Last updated

Dark septate endophytes (DSE) are a group of endophytic fungi characterized by their morphology of melanized, septate, hyphae. This group is likely paraphyletic, and contain conidial as well as sterile fungi that colonize roots intracellularly or intercellularly. [1] [2] Very little is known about the number of fungal taxa within this group, but all are in the Ascomycota. They are found in over 600 plant species and across 114 families of angiosperms and gymnosperms and co-occur with other types of mycorrhizal fungi. [3] They have a wide global distribution and can be more abundant in stressed environments. [2] Much of their taxonomy, physiology, and ecology are unknown.

Contents

Taxonomy

Based on analysis of sequences with the small subunit of the nuclear ribosomal RNA gene (18S), all DSE are within ascomycetes and include taxa in the orders Pleoporales, Microascales, Xylariales, Pezizales, Dothideales, Leotiales, Chaetothyriales, Elaphomycetales, Eurotiales, Onygenales, Saccharomycetales, Neolectales, Taphrinales, Mitosporic, and nonsporulating cultures. [3]

Natural history

Geographical distribution

Dark septate endophytes have been found in the subantarctic, boreal coniferous forests in Canada, temperate and boreal forests in Northern and Central Europe, exotic pine plantations in New Zealand, [3] temperate grasslands, epiphytic plants in tropical rain forests, alpine environments, and semi-arid environments. Studies in alpine and semi-arid ecosystems have shown that dark septate endophytes are more prevalent than arbuscular mycorrhizae in these environments. [2]

Physiology and function

Different species and strains of DSE have been found to have enzymes including laccases, lipases, amylases, and polyphenol oxidases. [3] They are capable of breaking down many organic compounds including starch, cellulose, laminari, xylan, gelatin, and RNA [4] from detrital nutrient pools. Their nitrogen sources are varied, and dark septate endophytes are able to use amino acids (e.g. alanine, glycine, and arginine) equally as efficiently as ammonium, as well as other sources like guanine and uric acid. Some DSE are also able to hydrolyse organic sulphate. [2]

A key characteristic of DSE is that they show high melanin content and appear darkened in morphology. This is hypothesized to protect hyphae from extremes in temperatures and drought and improve their persistence in the soil. [2]

Plant hosts

Dark septate endophytes have been observed across the plant kingdom in Dicotyledoneae and Monocotyledonae (Angiospermae), and Equisetopsida, Lycopsida, Polypodiopsida, and Psilotopsida (Gymnospermae). Their diversity of hosts suggests little or no host-specificity in this group. [3] They are found on plants that are non-mycorrhizal as well as plants with known arbuscular, ericoid, orchid, and ectomycorrhizal associations. [2]

Colonization of host plant

Dark septate endophytes are plant root-colonizing fungi that are often darkly-pigmented, with septate hyphae, and form structures inside plant root cells such as microsclerotia. However, there is great variation in morphology within this group. Dark septate endophytes are observed more frequently in mature parts of the root system. [3]

There are four main physiological structures of DSE colonization in plant roots. The runner hyphae are individual, superficial fungal strands following the depressions between epidermal cells. The appressorium is the swollen structure preceding penetration through a host cell wall. The penetration tube is the thin structure penetrating through the cell wall. The microsclerotia are the intracellular groups of hyphae with rounded, thick-walled cells. [3] The frequent inter- and intracellular structures suggest that DSE gain nutrition from the plant host. [1]

Ecology

Interaction with other root-associated fungi

Dark septate endophytes frequently co-occur with mycorrhizal fungi such as arbuscular, ericoid, orchid, and ectomycorrhiza. [2] There is some evidence that the different root-associated fungi interact. For example, ectomycorrhiza and DSE strains together increase plant biomass more than either alone. [5]

Effects on host plants

Effects of DSE on host plants range from pathogenic to mutualistic, depending on environmental factors as well as both host and fungus genotypes. [1] However, the majority of DSE studied showed that inoculation of DSE increased total, root, and shoot biomass by up to 80%. [6]

Dark septate endophyte hyphae are much smaller in diameter compared to plant roots which allows them to access soil micropores unavailable to plants to forage for water and nutrients. Therefore, association with DSE can increase nitrogen and phosphorus content in host plant tissue. [1] [6] In arid ecosystems, DSE in the order Pleosporales are commonly found in both rhizosphere soils and surface biological soil crust communities, which suggests that they may aid in nutrient absorption by plants by linking plant roots and biological soil crusts that fix carbon and nitrogen in hyphal networks, which forms the basis of the Fungal Loop Hypothesis [7]

The melanized cell walls of DSE may affect heat dissipation or form complexes with oxygen radicals in plant hosts, which can alter host thermal tolerance. Similar to other mycorrhizal fungi, DSE can protect hosts from pathogens or herbivores through the production of inhibitory metabolites, physical exclusion of other microorganisms, or melanized hyphae. Some fungi in the same genus as known DSE are known to produce antibacterial or antifungal compounds. [2]

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. This phenomenon is known as endosymbiosis. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza .They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Root hair</span> Part of plant root

Root hair, or absorbent hairs, are outgrowths of epidermal cells, specialized cells at the tip of a plant root. They are lateral extensions of a single cell and are only rarely branched. They are found in the region of maturation, of the root. Root hair cells improve plant water absorption by increasing root surface area to volume ratio which allows the root hair cell to take in more water. The large vacuole inside root hair cells makes this intake much more efficient. Root hairs are also important for nutrient uptake as they are main interface between plants and mycorrhizal fungi.

<span class="mw-page-title-main">Glomeromycota</span> Phylum of fungi

Glomeromycota are one of eight currently recognized divisions within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas (AMs) with the thalli of bryophytes and the roots of vascular land plants. Not all species have been shown to form AMs, and one, Geosiphon pyriformis, is known not to do so. Instead, it forms an endocytobiotic association with Nostoc cyanobacteria. The majority of evidence shows that the Glomeromycota are dependent on land plants for carbon and energy, but there is recent circumstantial evidence that some species may be able to lead an independent existence. The arbuscular mycorrhizal species are terrestrial and widely distributed in soils worldwide where they form symbioses with the roots of the majority of plant species (>80%). They can also be found in wetlands, including salt-marshes, and associated with epiphytic plants.

<span class="mw-page-title-main">Ericoid mycorrhiza</span> Species of fungus

The ericoid mycorrhiza is a mutualistic relationship formed between members of the plant family Ericaceae and several lineages of mycorrhizal fungi. This symbiosis represents an important adaptation to acidic and nutrient poor soils that species in the Ericaceae typically inhabit, including boreal forests, bogs, and heathlands. Molecular clock estimates suggest that the symbiosis originated approximately 140 million years ago.

Microbial inoculants also known as soil inoculants or bioinoculants are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied.

<span class="mw-page-title-main">Hartig net</span> Network of inward-growing hyphae

The Hartig net is the network of inward-growing hyphae, that extends into the plant host root, penetrating between plant cells in the root epidermis and cortex in ectomycorrhizal symbiosis. This network is the internal component of fungal morphology in ectomycorrhizal symbiotic structures formed with host plant roots, in addition to a hyphal mantle or sheath on the root surface, and extramatrical mycelium extending from the mantle into the surrounding soil. The Hartig net is the site of mutualistic resource exchange between the fungus and the host plant. Essential nutrients for plant growth are acquired from the soil by exploration and foraging of the extramatrical mycelium, then transported through the hyphal network across the mantle and into the Hartig net, where they are released by the fungi into the root apoplastic space for uptake by the plant. The hyphae in the Hartig net acquire sugars from the plant root, which are transported to the external mycelium to provide a carbon source to sustain fungal growth.

Nitrogen nutrition in the arbuscular mycorrhizal system refers to...

The mycorrhizosphere is the region around a mycorrhizal fungus in which nutrients released from the fungus increase the microbial population and its activities. The roots of most terrestrial plants, including most crop plants and almost all woody plants, are colonized by mycorrhiza-forming symbiotic fungi. In this relationship, the plant roots are infected by a fungus, but the rest of the fungal mycelium continues to grow through the soil, digesting and absorbing nutrients and water and sharing these with its plant host. The fungus in turn benefits by receiving photosynthetic sugars from its host. The mycorrhizosphere consists of roots, hyphae of the directly connected mycorrhizal fungi, associated microorganisms, and the soil in their direct influence.

<span class="mw-page-title-main">Mycorrhizal fungi and soil carbon storage</span> Terrestrial ecosystem

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<span class="mw-page-title-main">Ectomycorrhizal extramatrical mycelium</span>

Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.

<span class="mw-page-title-main">Root microbiome</span> Microbe community of plant roots

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi, and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

The fungal loop hypothesis suggests that soil fungi in arid ecosystems connect the metabolic activity of plants and biological soil crusts which respond to different soil moisture levels. Compiling diverse evidence such as limited accumulation of soil organic matter, high phenol oxidative and proteolytic enzyme potentials due to microbial activity, and symbioses between plants and fungi, the fungal loop hypothesis suggests that carbon and nutrients are cycled in biotic pools rather than leached or effluxed to the atmosphere during and between pulses of precipitation.

Orchid mycorrhizae are endomycorrhizal fungi which develop symbiotic relationships with the roots and seeds of plants of the family Orchidaceae. Nearly all orchids are myco-heterotrophic at some point in their life cycle. Orchid mycorrhizae are critically important during orchid germination, as an orchid seed has virtually no energy reserve and obtains its carbon from the fungal symbiont.

<span class="mw-page-title-main">Mycorrhiza helper bacteria</span> Group of organisms

Mycorrhiza helper bacteria (MHB) are a group of organisms that form symbiotic associations with both ectomycorrhiza and arbuscular mycorrhiza. MHBs are diverse and belong to a wide variety of bacterial phyla including both Gram-negative and Gram-positive bacteria. Some of the most common MHBs observed in studies belong to the phylas Pseudomonas and Streptomyces. MHBs have been seen to have extremely specific interactions with their fungal hosts at times, but this specificity is lost with plants. MHBs enhance mycorrhizal function, growth, nutrient uptake to the fungus and plant, improve soil conductance, aid against certain pathogens, and help promote defense mechanisms. These bacteria are naturally present in the soil, and form these complex interactions with fungi as plant root development starts to take shape. The mechanisms through which these interactions take shape are not well-understood and needs further study.

Leohumicola verrucosa is a heat-resistant, endophytic, ericoid mycorrhizal soil fungus. Its species name refers to rough, warty or spine-like ornamentations on its aleurioconidia. L. verrucosa was first described from samples of soil exposed to fire; among these it was especially abundant in regularly burned blueberry fields in eastern Canada. L. verrucosa forms mycorrhizal relationships with a wide variety and distribution of species in the Ericaceae family.

<span class="mw-page-title-main">Mucoromycota</span> Diverse group of molds

Mucoromycota is a division within the kingdom fungi. It includes a diverse group of various molds, including the common bread molds Mucor and Rhizopus. It is a sister phylum to Dikarya.

Darksidea is a genus of fungi belonging to the ascomycetes, in the order Pleosporales. It was described in 2015 by D.G. Knapp, Kovács, J.Z. Groenew. & Crous. Like many other members of the ascomycetes, they are dark septate endophytes, who colonize epidermal, intra- and inter-cellular root tissue, nearly always found upon grass species in arid or semiarid climates.

References

  1. 1 2 3 4 Jumpponen, A. 2001. Dark-Septate Endophytes – are they mycorrhizal? Mycorrhiza 11:207–211.
  2. 1 2 3 4 5 6 7 8 Mandyam, K. and Jumpponen, A. 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology. 53: 173–189.
  3. 1 2 3 4 5 6 7 Jumpponen, Ari; Trappe, James M. (1998). "Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi". New Phytologist. 140 (2): 295–310. doi: 10.1046/j.1469-8137.1998.00265.x . ISSN   0028-646X. PMID   33862835.
  4. Caldwell, B.A., Jumpponen, A., Trappe, J.M. 2000. Utilization of Major Detrital Substrates by Dark-Septate, Root Endophytes. Mycologia 92: 230–232.
  5. Reininger, V. and Sieber, T.N. 2013. Mitigation of antagonistic effects on plant growth due to root co-colonization by dark septate endophytes and ectomycorrhiza. Environmental Microbiology Reports 5(6), 892–898
  6. 1 2 Newsham, K.K. 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytologist 190: 783–793.
  7. Porras-Alfaro, A., Herrera, J., Natvig, D.O., Lipinski, K., Sinsabaugh, R.L. 2011. Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103: 10–21.