Deoxidization is a method used in metallurgy to remove the rest of oxygen content from previously reduced iron ore during steel manufacturing. In contrast, antioxidants are used for stabilization, such as in the storage of food. Deoxidation is important in the steelmaking process as oxygen is often detrimental to the quality of steel produced. Deoxidization is mainly achieved by adding a separate chemical species to neutralize the effects of oxygen or by directly removing the oxygen.
Oxidation is the process of an element losing electrons. For example, iron will transfer two of its electrons to oxygen, forming an oxide. This occurs all throughout as an unintended part of the steelmaking process.
Oxygen blowing is a method of steelmaking where oxygen is blown through pig iron to lower the carbon content. Oxygen forms oxides with the unwanted elements, such as carbon, silicon, phosphorus, and manganese, which appear from various stages of the manufacturing process. These oxides will float to the top of the steel pool and remove themselves from the pig iron. However, some of the oxygen will also react with the iron itself.
Due to the high temperatures involved in smelting, oxygen in the air may dissolve into the molten iron while it is being poured. Slag, a byproduct left over after the smelting process, is used to further absorb impurities such as sulfur or oxides and protect steel from further oxidation. However, it can still be responsible for some oxidation.
Some processes, while still able to lead to oxidation, are not relevant to the oxygen content of steel during its manufacture. For example, rust is a red iron oxide that forms when the iron in steel reacts with the oxygen or water in the air. This usually only occurs once the steel has been in use for varying lengths of time. Some physical components of the steelmaking process itself, such as the electric arc furnace, may also wear down and oxidize. This problem is typically dealt with by the use of refractory metals, which resist environmental conditions. [1]
If steel is not properly deoxidized, it will have lost various properties such as tensile strength, ductility, toughness, weldability, polishability, and machinability. This is due to forming non-metallic inclusions and gas pores, bubbles of gas that get trapped during the solidification process of steel. [2]
This method of deoxidization involves adding specific metals into the steel. These metals will react with the unwanted oxygen, forming a strong oxide that, compared to pure oxygen, will reduce the steel's strength and qualities by a lesser amount.
The chemical equation for deoxidization is represented by:
where n and m are coefficients, D is the deoxidizing agent, and O is oxygen.
Thus, the chemical equilibrium equation involved is:
where aox is the activity, or concentration, of the oxide in the steel, aD is the activity of the deoxidizing agent, and aO is the activity of the oxygen.
An increase in the equilibrium constant Keq will cause an increase in aox, and thus more of the oxide product.
Keq can be manipulated by the steel temperature via the following equation:
where AD and BD are parameters specific to different deoxidizers and T is the temperature in K°. Below are the values for certain deoxidizers at a temperature of 1873 K°. [1] [3]
Deoxidizer | A | B | Keq |
---|---|---|---|
Manganese | 12,440 | 5.33 | 1.318 |
Silicon | 30,000 | 11.5 | 4.518 |
Aluminum | 62,780 | 20.5 | 13.018 |
Below is a list of commonly used metallic deoxidizers:
Vacuum deoxidation is a method which involves using a vacuum to remove impurities. A portion of the carbon and oxygen in steel will react, forming carbon monoxide. CO gas will float up to the top of the liquid steel and be removed by a vacuum system.
As the chemical reaction involved in vacuum deoxidation is:
the reaction between carbon and oxygen is represented by the following chemical equilibrium equation:
where PCO is the partial pressure of the carbon monoxide formed.
Decreasing the oxygen activity(aO) will result in a higher equilibrium constant, thus more product, CO. To achieve this, subjecting the pool of steel to vacuum treatment decreases the value of PCO, allowing for more CO gas to be produced. [1] [4]
This method relies on the idea that deoxidation of slag will lead to the deoxidation of steel.
The chemical equilibrium equation used for this process is:
where a[O] is the activity of the oxygen in the slag, and a(O) is the activity of oxygen in the steel.
Reducing the activity in the slag (a[O]) will lower the oxygen levels in the slag. Afterwards, oxygen will diffuse from the steel into the lesser concentrated slag. This method is done by using deoxidizing agents on the slag, such as coke or silicon. As these agents do not come into direct contact with the steel, non-metallic inclusions will not form in the steel itself. [1]
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.
A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.
The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. It converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using a finely divided iron metal catalyst:
Steelmaking is the process of producing steel from iron ore and/or scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon are removed from the sourced iron, and alloying elements such as manganese, nickel, chromium, carbon and vanadium are added to produce different grades of steel.
Slag is a by-product of smelting (pyrometallurgical) ores and recycled metals. Slag is mainly a mixture of metal oxides and silicon dioxide. Broadly, it can be classified as ferrous, ferroalloy or non-ferrous/base metals. Within these general categories, slags can be further categorized by their precursor and processing conditions. "Slag generated from the EAF process can contain toxic metals, which can be hazardous to human and environmental health".
A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. Blast refers to the combustion air being supplied above atmospheric pressure.
Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.
Basic oxygen steelmaking, also known as Linz-Donawitz steelmaking or the oxygen converter process, is a method of primary steelmaking in which carbon-rich molten pig iron is made into steel. Blowing oxygen through molten pig iron lowers the carbon content of the alloy and changes it into low-carbon steel. The process is known as basic because fluxes of calcium oxide or dolomite, which are chemical bases, are added to promote the removal of impurities and protect the lining of the converter.
Ferromanganese is an alloy of iron and manganese, with other elements such as silicon, carbon, sulfur, nitrogen and phosphorus. The primary use of ferromanganese is as a type of processed manganese source to add to different types of steel, such as stainless steel. Global production of low-carbon ferromanganese reached 1.5 megatons in 2010.
An open-hearth furnace or open hearth furnace is any of several kinds of industrial furnace in which excess carbon and other impurities are burnt out of pig iron to produce steel. Because steel is difficult to manufacture owing to its high melting point, normal fuels and furnaces were insufficient for mass production of steel, and the open-hearth type of furnace was one of several technologies developed in the nineteenth century to overcome this difficulty. Compared with the Bessemer process, which it displaced, its main advantages were that it did not expose the steel to excessive nitrogen, was easier to control, and permitted the melting and refining of large amounts of scrap iron and steel.
An electric arc furnace (EAF) is a furnace that heats material by means of an electric arc.
The Pidgeon process is a practical method for smelting magnesium. The most common method involves the raw material, dolomite being fed into an externally heated reduction tank and then thermally reduced to metallic magnesium using 75% ferrosilicon as a reducing agent in a vacuum. Overall the processes in magnesium smelting via the Pidgeon process involve dolomite calcination, grinding and pelleting, and vacuum thermal reduction.
Direct reduced iron (DRI), also called sponge iron, is produced from the direct reduction of iron ore into iron by a reducing gas which contains elemental carbon and/or hydrogen. When hydrogen is used as the reducing gas there are no greenhouse gases produced. Many ores are suitable for direct reduction.
An Ellingham diagram is a graph showing the temperature dependence of the stability of compounds. This analysis is usually used to evaluate the ease of reduction of metal oxides and sulfides. These diagrams were first constructed by Harold Ellingham in 1944. In metallurgy, the Ellingham diagram is used to predict the equilibrium temperature between a metal, its oxide, and oxygen — and by extension, reactions of a metal with sulfur, nitrogen, and other non-metals. The diagrams are useful in predicting the conditions under which an ore will be reduced to its metal. The analysis is thermodynamic in nature and ignores reaction kinetics. Thus, processes that are predicted to be favourable by the Ellingham diagram can still be slow.
Electrometallurgy is a method in metallurgy that uses electrical energy to produce metals by electrolysis. It is usually the last stage in metal production and is therefore preceded by pyrometallurgical or hydrometallurgical operations. The electrolysis can be done on a molten metal oxide which is used for example to produce aluminium from aluminium oxide via the Hall-Hérault process. Electrolysis can be used as a final refining stage in pyrometallurgical metal production (electrorefining) and it is also used for reduction of a metal from an aqueous metal salt solution produced by hydrometallurgy (electrowinning).
Argonoxygen decarburization (AOD) is a process primarily used in stainless steel making and other high grade alloys with oxidizable elements such as chromium and aluminium. After initial melting the metal is then transferred to an AOD vessel where it will be subjected to three steps of refining; decarburization, reduction, and desulfurization.
Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.
Deoxidized steel is steel that has some or all of the oxygen removed from the melt during the steelmaking process. Liquid steels contain dissolved oxygen after their conversion from molten iron, but the solubility of oxygen in steel decreases with cooling. As steel cools, excess oxygen can cause blowholes or precipitate FeO. Therefore, several strategies have been developed for deoxidation. This may be accomplished by adding metallic deoxidizing agents to the melt either before or after it is tapped, or by vacuum treatment, in which carbon dissolved in the steel is the deoxidizer.
Archaeometallurgical slag is slag discovered and studied in the context of archaeology. Slag, the byproduct of iron-working processes such as smelting or smithing, is left at the iron-working site rather than being moved away with the product. As it weathers well, it is readily available for study. The size, shape, chemical composition and microstructure of slag are determined by features of the iron-working processes used at the time of its formation.